首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On efficient least-squares finite element methods for convection-dominated problems
【24h】

On efficient least-squares finite element methods for convection-dominated problems

机译:对流占优问题的有效最小二乘有限元方法

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the least-squares finite element method and its three variants for obtaining efficient numerical solutions to convection-dominated convection-diffusion problems. The coercivity estimates for the corresponding homogeneous least-squares energy functionals are derived, and based on which error estimates are established. One of the common advantages of these least-squares methods is that the resulting linear system is symmetric and positive definite. Numerical experiments that demonstrate the theoretical analysis of the developed methods are presented. It was observed that the primitive least-squares method performs poorly for convection-dominated problems while the stabilized, streamline diffusion and negatively stabilized streamline diffusion least-squares methods perform considerably better for interior layer problems, and the negatively stabilized streamline diffusion least-squares method is able to better capture the boundary layer behavior when compared with other least-squares methods. But all the least-squares methods do not give reasonable results for problem possessing both interior and boundary layer structures in the solution.
机译:本文重点讨论最小二乘有限元方法及其三个变体,以获得对流占优的对流扩散问题的有效数值解。推导了相应的齐次最小二乘能量函数的矫顽力估计,并以此为基础建立了误差估计。这些最小二乘法的共同优点之一是所得的线性系统是对称且为正定的。数值实验表明了所开发方法的理论分析。据观察,原始最小二乘法在对流占优的问题上表现不佳,而稳定的,流线扩散和负稳定的流线扩散最小二乘方法对内层问题的表现要好得多,而负稳定的流线扩散最小二乘法与其他最小二乘法相比,能够更好地捕获边界层行为。但是对于解决方案中同时具有内部和边界层结构的问题,所有最小二乘法都无法给出合理的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号