首页> 外文学位 >Development of three-dimensional least-squares finite element technique for inelastic deformation analysis.
【24h】

Development of three-dimensional least-squares finite element technique for inelastic deformation analysis.

机译:用于非弹性变形分析的三维最小二乘有限元技术的发展。

获取原文
获取原文并翻译 | 示例

摘要

In this research, a three-dimensional finite element technique to analyze inelastic deformation of porous metallic solids is presented. The finite element technique is based on a least-squares variational principle. There are several unique features to the least-squares technique which sets it apart from the conventional finite element method based on the Galerkin-displacement and other mixed formulations. One feature is that the technique always yields a symmetric and positive-definite system of algebraic equations. Second, the technique is not sensitive to the character of the governing equations, thus the same problem-solving procedure can be used for problems governed by mixed elliptic-hyperbolic equations such as shear banding problems. Another feature is that the mixed least-squares technique circumvents the LBB condition imposed on saddle-point formulations such as the mixed Galerkin procedure.; In the present formulation, deformation is viewed as a continuous process and an incremental approach is adopted for the analysis. The three velocity and six Cauchy stress rate components constitute the set of nodal dependent variables. Linear interpolation functions are used for their finite element approximation. Due to the nature of three-dimensional modeling and the nine degrees of freedom per node, the resulting system coefficient matrix is extremely sparse. A sparse data storage scheme is implemented to minimize the required computer memory size. Since the least-squares technique always generates a symmetric and positive-definite system of equations, an effective preconditioned conjugate gradient iterative solver is chosen to solve the linear system. The deformation and stress histories are determined by simple explicit time integration schemes. A comprehensive set of benchmark problems is treated to explore the performance of the least-squares technique and to verify the computer program. Furthermore, two large-scale inelastic problems are investigated involving the necking behavior of a flat rectangular titanium alloy tensile specimen and the open-die upset forging of a porous aluminum rectangular block. The results obtained are physically realistic and provided insights into finite deformation processes.
机译:在这项研究中,提出了三维有限元技术来分析多孔金属固体的非弹性变形。有限元技术基于最小二乘变分原理。最小二乘技术有几个独特之处,使其不同于基于Galerkin位移和其他混合公式的传统有限元方法。一个特征是该技术总是产生对称且正定的代数方程组。其次,该技术对控制方程的特征不敏感,因此,对于由混合椭圆-双曲方程控制的问题(例如剪切带问题),可以使用相同的问题解决程序。另一个特点是,混合最小二乘技术规避了对马鞍点公式(例如混合Galerkin程序)施加的LBB条件。在本公式中,变形被视为连续过程,并且采用增量方法进行分析。三个速度和六个柯西应力速率分量构成了节点相关变量的集合。线性插值函数用于其有限元逼近。由于三维建模的特性以及每个节点有9个自由度,因此所得的系统系数矩阵极为稀疏。实施了稀疏数据存储方案以最小化所需的计算机内存大小。由于最小二乘技术始终会生成对称的正定方程组,因此选择了有效的预处理共轭梯度迭代求解器来求解线性系统。变形和应力历史由简单的显式时间积分方案确定。处理了一套全面的基准测试问题,以探索最小二乘技术的性能并验证计算机程序。此外,研究了两个大规模的非弹性问题,涉及扁平矩形钛合金拉伸试样的颈缩行为和多孔铝矩形块的开模up锻。获得的结果在物理上是现实的,并提供了对有限变形过程的见解。

著录项

  • 作者

    Siu, Allen H. P.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号