首页> 外文OA文献 >A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations
【2h】

A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations

机译:不可压缩Navier-Stokes方程的高阶Lagrangian解耦方法

摘要

A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
机译:针对非定常对流扩散和不可压缩的Navier-Stokes方程,提出了一种高阶拉格朗日解耦方法。该方法基于:(1)拉格朗日变分形式,将对流扩散方程简化为对称的初值问题; (2)沿特征积分的隐式高阶后向微分有限差分方案; (3)有限元或谱元空间离散化; (4)网格不变性程序和高阶显式时间步进方案,用于推导对流时空点的函数值。该方法通过系统有效地扩展到高阶精度,并引入了一种易于保留结构的特征英尺计算程序,该方法可以在现代体系结构上轻松实现,从而对以前的有限元特征方法进行了改进。由于对流和Stokes算子的解耦以及随之而来的时间稳定性的增加,对于Navier-Stokes方程,新方法比显式对流方案更有效。对于对流扩散方程和Navier-Stokes方程,给出了许多数值示例,用于光谱元素空间离散化的特定情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号