首页>
外文OA文献
>Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber
【2h】
Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber
展开▼
机译:火箭燃烧室高长宽比冷却通道设计的比较
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. The design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop cooling can now be done in relatively short periods of time with multiple iterations.
展开▼