首页> 外文OA文献 >Kernel methods for advanced statistical process control
【2h】

Kernel methods for advanced statistical process control

机译:用于高级统计过程控制的内核方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis investigated development and application of Kernel methods to enhance Statistical Process Control procedures. The first part of this thesis discussed the development of a control chart based on adaptive Kernel Principal Components Analysis (KPCA) to monitor non-stationary nonlinear process behaviour. Moreover, in order to have a fast adaptive KPCA model, we proposed an updating method that provides a reduced computation cost for large-scale KPCA model and a good tracking of the original matrix with a small reconstruction error. Analysis and comparison with other Principal Components Analysis control charts showed that the proposed procedure provides overall competitive detection results. The second part of this thesis investigated monitoring of nonlinear autocorrelated processes based on Support Vector Regression (SVR). The advantage of this procedure is that it allows modelling and control of nonlinear processes without the need to find analytical solutions to describe phenomena of interest. Results showed that the used control charts can effectively monitor the process behaviour while guarantying an acceptable robustness. The third part of this dissertation dealt with development of local Support Vector Domain Description (SVDD) based control chart to monitor complex and multimodal processes without specifying a probability distribution. This procedure allows simplifying and reducing the complexity of the problem which can help selecting SVDD parameters. Analysis of the proposed control chart using simulated and real case studies showed that this procedure allows better detection results while guaranteeing a reduced false alarm rate.
机译:本文研究了改进统计过程控制程序的内核方法的开发和应用。本文的第一部分讨论了基于自适应核主成分分析(KPCA)的控制图的开发,以监控非平稳非线性过程行为。此外,为了具有快速的自适应KPCA模型,我们提出了一种更新方法,该方法可以降低大规模KPCA模型的计算成本,并以较小的重构误差很好地跟踪原始矩阵。与其他主成分分析控制图的分析和比较表明,该程序可提供总体竞争性检测结果。本文的第二部分研究了基于支持向量回归(SVR)的非线性自相关过程的监控。此过程的优势在于,它可以对非线性过程进行建模和控制,而无需找到描述感兴趣现象的分析解决方案。结果表明,使用的控制图可以有效地监视过程行为,同时保证可接受的鲁棒性。本文的第三部分讨论了基于局部支持向量域描述(SVDD)的控制图的开发,该控制图可以在不指定概率分布的情况下监视复杂的多模式过程。此过程可以简化问题并降低其复杂性,从而有助于选择SVDD参数。使用模拟和实际案例研究对建议的控制图进行的分析表明,此过程可提供更好的检测结果,同时保证降低的误报率。

著录项

  • 作者

    Ben Khedhiri Issam;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号