首页> 外文OA文献 >Efficient R-estimation of principal and common principal components
【2h】

Efficient R-estimation of principal and common principal components

机译:主成分和通用主成分的有效R估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose rank-based estimators of principal components, both in the one-sample and, under the assumption of common principal components, in the m-sample cases. Those estimators are obtained via a rank-based version of Le Cam'sone-step method, combined with an estimation of cross-information quantities. Under arbitrary elliptical distributions with, in the m-sample case, possibly heterogeneous radial densities, those R-estimators remain root-n consistent and asymptotically normal, while achieving asymptotic e ciency under correctly speci ed densities. Contrary to their traditional counterparts computed from empirical covariances, they do not require any moment conditions. When based on Gaussian scorefunctions, in the one-sample case, they moreover uniformly dominate their classical competitors in the Pitman sense. Their finite-sample performances are investigatedvia a Monte-Carlo study.
机译:我们建议在一个样本中以及在假设共有主成分的情况下在m样本情况下基于主成分的基于秩的估计器。这些估计量是通过Le Cam的单步方法的基于排名的版本与交叉信息量的估计相结合而获得的。在m个样本的情况下,在任意椭圆分布下,可能具有不同的径向密度,这些R估计量保持root-n一致且渐近为正态,同时在正确指定的密度下实现渐近效率。与根据经验协方差计算得出的传统对等方法相反,它们不需要任何时刻条件。当基于高斯得分函数时,在一个样本的情况下,他们在皮特曼意义上统一地统治了他们的经典竞争者。通过蒙特卡洛研究对他们的有限样本性能进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号