首页> 外文期刊>Neurocomputing >Accurate and efficient classification based on common principal components analysis for multivariate time series
【24h】

Accurate and efficient classification based on common principal components analysis for multivariate time series

机译:基于通用主成分分析的多元时间序列的准确高效分类

获取原文
获取原文并翻译 | 示例

摘要

Multivariate time series are found everywhere and they are important data in the field of data mining, but their high dimensionality often hinders the quality of techniques employed for classifying multivariate time series. In this study, we propose an accurate and efficient classification method based on common principal components analysis for multivariate time series. First, multivariate time series are divided into several clusters according to the number of class labels, and the high dimensionality of multivariate time series can then be reduced by common principal components analysis, which gives the reduced principal component series sufficiently high variance. Second, each cluster is used to construct the corresponding reduced coordinate space formed by the eigenvectors of the common covariance matrix. Third, any multivariate time series without a class label can be projected onto these coordinate spaces and its label can be predicted based on the minimal variance of the reduced principal components series according to the different projections. Our experimental results demonstrated that the proposed method for the classification of multivariate time series is more accurate and efficient than existing methods. It is also flexible for multivariate time series with different lengths. (C) 2015 Elsevier B.V. All rights reserved.
机译:多元时间序列随处可见,它们是数据挖掘领域中的重要数据,但是它们的高维数通常会阻碍用于对多元时间序列进行分类的技术的质量。在这项研究中,我们提出了一种基于通用主成分分析的多元时间序列的准确高效的分类方法。首先,根据类别标签的数量将多元时间序列划分为几个聚类,然后可以通过通用主成分分析来降低多元时间序列的高维数,从而使减少后的主成分序列具有足够高的方差。其次,每个聚类用于构造由公共协方差矩阵的特征向量形成的相应的缩减坐标空间。第三,可以将任何没有类别标签的多元时间序列投影到这些坐标空间上,并且可以根据减少的主成分序列根据不同投影的最小方差来预测其标签。我们的实验结果表明,所提出的多元时间序列分类方法比现有方法更准确,更有效。它对于具有不同长度的多元时间序列也很灵活。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号