首页> 外文OA文献 >Development of New Adaptive Control Strategies for a Two-Link Flexible Manipulator
【2h】

Development of New Adaptive Control Strategies for a Two-Link Flexible Manipulator

机译:两连杆柔性机械手新的自适应控制策略的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Manipulators with thin and light weight arms or links are called as Flexible-Link Manipulators (FLMs). FLMs offer several advantages over rigid-link manipulators such as achieving highspeed operation, lower energy consumption, and increase in payload carrying capacity and find applications where manipulators are to be operated in large workspace like assembly of freeflying space structures, hazardous material management from safer distance, detection of flaws udin large structure like airplane and submarines. However, designing a feedback control system for a flexible-link manipulator is challenging due the system being non-minimum phase, underactuated and non-collocated. Further difficulties are encountered when such manipulators handleudunknown payloads. Overall deflection of the flexible manipulator are governed by the different vibrating modes (excited at different frequencies) present along the length of the link. Due to change in payload, the flexible modes (at higher frequencies) are excited giving rise to uduncertainties in the dynamics of the FLM. To achieve effective tip trajectory tracking whilst quickly suppressing tip deflections when the FLM carries varying payloads adaptive control is necessary instead of fixed gain controller to cope up with the changing dynamics of the udmanipulator. Considerable research has been directed in the past to design adaptive controllers based on either linear identified model of a FLM or error signal driven intelligent supervised learning e.g. neural network, fuzzy logic and hybrid neuro-fuzzy. However, the dynamics of the FLM being nonlinear there is a scope of exploiting nonlinear modeling approach to design adaptive controllers. The objective of the thesis is to design advanced adaptive control strategies udfor a two-link flexible manipulator (TLFM) to control the tip trajectory tracking and its deflections while handling unknown payloads. To achieve tip trajectory control and simultaneously suppressing the tip deflection quickly udwhen subjected to unknown payloads, first a direct adaptive control (DAC) is proposed. The udproposed DAC uses a Lyapunov based nonlinear adaptive control scheme ensuring overall udsystem stability for the control of TLFM. For the developed control laws, the stability proof of udthe closed-loop system is also presented. The design of this DAC involves choosing a control udlaw with tunable TLFM parameters, and then an adaptation law is developed using the closed udloop error dynamics. The performance of the developed controller is then compared with that of uda fuzzy learning based adaptive controller (FLAC). The FLAC consists of three major udcomponents namely a fuzzy logic controller, a reference model and a learning mechanism. It udutilizes a learning mechanism, which automatically adjusts the rule base of the fuzzy controller udso that the closed loop performs according to the user defined reference model containing udinformation of the desired behavior of the controlled system. udAlthough the proposed DAC shows better performance compared to FLAC but it suffers from udthe complexity of formulating a multivariable regressor vector for the TLFM. Also, the adaptive udmechanism for parameter updates of both the DAC and FLAC depend upon feedback error based udsupervised learning. Hence, a reinforcement learning (RL) technique is employed to derive an udadaptive controller for the TLFM. The new reinforcement learning based adaptive control ud(RLAC) has an advantage that it attains optimal control adaptively in on-line. Also, the udperformance of the RLAC is compared with that of the DAC and FLAC.udIn the past, most of the indirect adaptive controls for a FLM are based on linear identified udmodel. However, the considered TLFM dynamics is highly nonlinear. Hence, a nonlinear udautoregressive moving average with exogenous input (NARMAX) model based new Self-Tuning udControl (NMSTC) is proposed. The proposed adaptive controller uses a multivariable Proportional Integral Derivative (PID) self-tuning control strategy. The parameters of the PID udare adapted online using a nonlinear autoregressive moving average with exogenous-input ud(NARMAX) model of the TLFM. Performance of the proposed NMSTC is compared with that udof RLAC.udThe proposed NMSTC law suffers from over-parameterization of the controller. To overcome udthis a new nonlinear adaptive model predictive control using the NARMAX model of the TLFM ud(NMPC) developed next. For the proposed NMPC, the current control action is obtained by udsolving a finite horizon open loop optimal control problem on-line, at each sampling instant,udusing the future predicted model of the TLFM. NMPC is based on minimization of a set of udpredicted system errors based on available input-output data, with some constraints placed on the udprojected control signals resulting in an optimal control sequence. The performance of the udproposed NMPC is also compared with that of the NMSTC. udPerformances of all the developed algorithms are assessed by numerical simulation in udMATLAB/SIMULINK environment and also validated through experimental studies using audphysical TLFM set-up available in Advanced Control and Robotics Research Laboratory, udNational Institute of Technology Rourkela. It is observed from the comparative assessment of the udperformances of the developed adaptive controllers that proposed NMPC exhibits superior ud7performance in terms of accurate tip position tracking (steady state error ≈ 0.01°) while udsuppressing the tip deflections (maximum amplitude of the tip deflection ≈ 0.1 mm) when the udmanipulator handles variation in payload (increased payload of 0.3 kg). udThe adaptive control strategies proposed in this thesis can be applied to control of complex udflexible space shuttle systems, long reach manipulators for hazardous waste management from udsafer distance and for damping of oscillations for similar vibration systems.
机译:手臂或连杆轻巧的机械手称为柔性连杆机械手(FLM)。与刚性连杆机械手相比,FLM具有多个优势,例如,实现了高速操作,较低的能耗以及增加了有效载荷的承载能力,并找到了在大型工作空间中操作机械手的应用,例如自由飞行空间结构的组装,从更安全的距离进行危险物料管理,检测缺陷 udin大型结构,例如飞机和潜艇。但是,由于系统处于非最小相位,驱动不足和并置的状态,因此为柔性链接机械手设计反馈控制系统具有挑战性。当此类操纵器处理未知载荷时,会遇到更多困难。柔性机械臂的整体挠度由沿连杆长度方向出现的不同振动模式(在不同频率下激发)控制。由于有效载荷的变化,灵活模式(在较高的频率下)会被激发,从而导致FLM动力学的不确定性。为了实现有效的刀头轨迹跟踪,同时当FLM携带变化的有效载荷时快速抑制刀头偏转,需要自适应控制而不是固定增益控制器来适应 udmanipulator不断变化的动态。过去已经针对基于FLM的线性识别模型或误差信号驱动的智能监督学习(例如,神经网络,模糊逻辑和混合神经模糊。但是,由于FLM的动力学是非线性的,因此有一个利用非线性建模方法来设计自适应控制器的范围。本文的目的是为双链接柔性操纵器(TLFM)设计先进的自适应控制策略,以便在处理未知有效载荷的同时控制尖端轨迹跟踪及其偏转。为了实现尖端轨迹控制并同时在受到未知有效载荷的同时迅速抑制尖端偏转,首先提出了一种直接自适应控制(DAC)。建议的DAC使用基于Lyapunov的非线性自适应控制方案,以确保TLFM控制的总体系统稳定性。对于发达的控制律,还给出了闭环系统的稳定性证明。该DAC的设计涉及选择具有可调TLFM参数的控制 udlaw,然后使用闭环 udloop误差动态来开发自适应律。然后将开发的控制器的性能与基于模糊学习的自适应控制器(FLAC)的性能进行比较。 FLAC由三个主要组成部分组成,即模糊逻辑控制器,参考模型和学习机制。它利用学习机制自动调整模糊控制器的规则库,以使闭环根据用户定义的参考模型执行,该参考模型包含受控系统所需行为的信息。 虽然建议的DAC与FLAC相比表现出更好的性能,但是它受制于为TLFM制定多变量回归向量的复杂性。此外,用于DAC和FLAC的参数更新的自适应 ud机制取决于基于 udsupervised学习的反馈错误。因此,采用强化学习(RL)技术来推导TLFM的适应控制器。新的基于强化学习的自适应控制 ud(RLAC)的优势在于,它可以在线自适应地实现最佳控制。同样,将RLAC的 ud性能与DAC和FLAC的 ud性能进行比较。 ud过去,FLM的大多数间接自适应控制都是基于线性识别的 udmodel。但是,考虑的TLFM动力学是高度非线性的。因此,提出了一种基于外源输入的非线性自回归移动平均模型(NARMAX),该模型基于新的自调整udControl(NMSTC)。提出的自适应控制器使用多变量比例积分微分(PID)自整定控制策略。使用具有TLFM的外来输入 ud(NARMAX)模型的非线性自回归移动平均值在线调整PID的参数。将拟议的NMSTC的性能与RLAC的性能进行比较。 ud拟议的NMSTC律遭受控制器过参数化的困扰。为了克服这个问题,接下来开发了使用TLFM ud(NMPC)的NARMAX模型的新的非线性自适应模型预测控制。对于拟议的NMPC,通过使用TLFM的未来预测模型,在每个采样时刻在线求解有限水平开环最优控制问题,从而获得当前的控制动作。 NMPC基于最小化基于可用输入输出数据的一组预测的系统错误,在 udprojected控制信号上施加一些约束,从而获得最佳控制序列。提议中的NMPC的性能也与NMSTC的性能进行了比较。 ud在udMATLAB / SIMULINK环境中通过数值模拟评估所有已开发算法的性能,并通过使用 udNational Institute of Technology Rourkela的Advanced Control and Robotics Research Laboratory中提供的 udphysical TLFM设置通过实验研究进行了验证。从对已开发的自适应控制器的 ud性能的比较评估中可以看出,建议的NMPC在精确的刀头位置跟踪(稳态误差≈0.01°)方面表现出卓越的 ud7性能,同时 uds抑制了刀头偏斜(刀头的最大振幅) udmanipulator处理载荷的变化(载荷增加0.3 kg)时,挠度≈0.1 mm)。 ud本文提出的自适应控制策略可用于控制复杂的 uflexflexible航天飞机系统,长距离操纵器,以从 udsafe距离进行危险废物管理,以及用于类似振动系统的振动阻尼。

著录项

  • 作者

    Pradhan Santanu Kumar;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号