首页> 外文OA文献 >Design and Experimental Realization of Adaptive Control Schemes for an Autonomous Underwater Vehicle
【2h】

Design and Experimental Realization of Adaptive Control Schemes for an Autonomous Underwater Vehicle

机译:自主水下航行器自适应控制方案的设计与实验实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research on Autonomous Underwater Vehicle(AUV) has attracted increased attention of control engineering community in the recent years due to its many interesting applications such as in Defense organisations for underwater mine detection, region surveillance, oceanography studies, oil/gas industries for inspection of underwater pipelines and other marine related industries. However, for the realization of these applications, effective motion control algorithms need to be developed. These motion control algorithms require mathematical representation of AUV which comprises of hydrodynamic damping, Coriolis terms, mass and inertia terms etc. To obtain dynamics of an AUV, different analytical and empirical methods are reported in the literature such as tow tank test, Computational Fluid Dynamics (CFD) analysis and on-line system identification. Among these methods, tow-tank test and CFD analysis provide white-box identified model of the AUV dynamics. Thus, the control design using these methods are found to be ineffective in situation of change in payloads of an AUV or parametric variations in AUV dynamics. On the other hand, control design using on-line identification, the dynamics of AUV can be obtained at every sampling time and thus the aforesaid parametric variations in AUV dynamics can be handled effectively. In this thesis, adaptive control strategies are developed using the parameters of AUV obtained through on-line system identification. The proposed algorithms are verified first through simulation and then through experimentation on the prototype AUV. Among various motion control algorithms, waypoint tracking has more practical significance for oceanographic surveys and many other applications. In order to implement, waypoint motion control schemes, Line-of-Sight (LoS) guidance law can be used which is computationally less expensive. In this thesis, adaptive control schemes are developed to implement LoS guidance for an AUV for practical realization of the control algorithm. udFurther, in order to realize the proposed control algorithms, a prototype AUV is developed in the laboratory. The developed AUV is a torpedo-shaped in order to experience low drag force, underactuated AUV with a single thruster for forward motion and control planes for angular motion. Firstly, the AUV structure such as nose profile, tail profile, hull section and control planes are designed and developed. Secondly, the hardware configuration of the AUV such as sensors, actuators, computational unit, communication module etc. are appropriately selected. Finally, a software framework called Robot Operating System (ROS) is used for seamless integration of various sensors, actuators with the computational unit. ROS is a software platform which provides right platform for the implementation of the control algorithms using the sensor data to achieve autonomous capability of the AUV. In order to develop adaptive control strategies, the unknown dynamics of the AUV is identified using polynomial-based Nonlinear Autoregressive Moving Average eXogenous (NARMAX) model structure. The parameters of this NARMAX model structure are identified online using Recursive Extended Least Square (RELS) method. Then an adaptive controller is developed for realization of the LoS guidance law for an AUV. Using the kinematic equation and the desired path parameters, a Lyapunov based backstepping controller is designed to obtain the reference velocities for the dynamics. Subsequently, a self-tuning PID controller is designed for the AUV to track these reference velocities. Using an inverse optimal control technique, the gains of the selftuning PID controller are tuned on-line. Although, this algorithm is computationally less expensive but there lie issues such as actuator constraints and state constraints which need to be resolved in view of practical realization of the control law. It is also observed that the proposed NARMAX structure of the AUV consists of redundant regressor terms. To alleviate the aforesaid limitations of the Inverse optimal self-tuning control scheme, a constrained adaptive control scheme is proposed that employs a minimum representation of the NARMAX structure (MR-NARMAX) for capturing AUV dynamics. The regressors of the MR-NARMAX structure are identified using Forward Regressor Orthogonal Least Square algorithm. Further, the parameters of this MRNARMAX model structure of the AUV are identified at every sampling time using RELS algorithm. Using the desired path parameters and the identified dynamics, an error objective function is defined which is to be minimized. The minimization problem where the objective function with the state and actuator constraints is formulated as a convex optimization problem. This optimization problem is solved using quadratic programming technique. The proposed MR-NARMAX based adaptive control is verified in the simulation and then on the prototype AUV. From the obtained results it is observed that this algorithm provides successful tracking of the desired heading. But, the proposed control algorithm is computational expensive, as an optimization problem is to be solved at each sampling instant. In order to reduce the computational time, an explicit model predictive control strategy is developed using the concept of multi-parametric programming. A Lyapunov based backstepping controller is designed to generate desired yaw velocity in order to steer the AUV towards the desired path. This explicit model predictive controller is designed using the identified NARMAX model for tracking the desired yaw velocity. The proposed explicit MPC algorithm is implemented first in simulation and then in the prototype AUV. From the simulation and experimental results, it is found that this controller has less computation time and also it considers both the state and actuator constraints whilst exhibiting good tracking performance.
机译:近年来,自动水下航行器(AUV)的研究引起了控制工程界的越来越多的关注,例如在国防组织中进行水下地雷探测,区域监视,海洋学研究,石油/天然气行业以进行水下检查的应用管道和其他海洋相关产业。然而,为了实现这些应用,需要开发有效的运动控制算法。这些运动控制算法要求AUV的数学表示形式,包括流体动力阻尼,科里奥利项,质量和惯性项等。要获得AUV的动力学,文献中报道了不同的​​分析和经验方法,例如拖箱试验,计算流体动力学(CFD)分析和在线系统识别。在这些方法中,拖车测试和CFD分析提供了白盒识别的AUV动力学模型。因此,发现使用这些方法的控制设计在AUV的有效载荷变化或AUV动力学参数变化的情况下无效。另一方面,通过在线识别的控制设计,可以在每个采样时间获得AUV的动力学特性,从而可以有效地处理AUV动力学特性中的上述参数变化。本文利用在线系统辨识获得的AUV参数,开发了自适应控制策略。首先通过仿真验证了提出的算法,然后通过在原型AUV上进行实验进行了验证。在各种运动控制算法中,航点跟踪对于海洋学调查和许多其他应用具有更实际的意义。为了实施航点运动控制方案,可以使用视线(LoS)制导律,这在计算上更便宜。本文提出了一种自适应控制方案来实现AUV的视距引导,以实现控制算法的实际实现。 ud进一步,为了实现所提出的控制算法,在实验室中开发了原型AUV。研制的AUV是鱼雷形的,以便承受低阻力,欠驱动AUV带有单个推进器,用于向前运动,而控制平面用于角运动。首先,设计并开发了AUV结构,如鼻子轮廓,尾巴轮廓,船体截面和控制平面。其次,适当选择AUV的硬件配置,例如传感器,执行器,计算单元,通信模块等。最后,一个称为机器人操作系统(ROS)的软件框架用于将各种传感器,执行器与计算单元无缝集成。 ROS是一个软件平台,它为使用传感器数据实现AUV的自主功能的控制算法的实施提供了正确的平台。为了开发自适应控制策略,使用基于多项式的非线性自回归移动平均外生(NARMAX)模型结构来识别AUV的未知动力学。使用递归扩展最小二乘(RELS)方法在线识别此NARMAX模型结构的参数。然后,为实现AUV的LoS制导律,开发了一种自适应控制器。使用运动方程式和所需的路径参数,设计了基于Lyapunov的反推控制器,以获取动力学的参考速度。随后,为AUV设计了一个自整定PID控制器,以跟踪这些参考速度。使用逆最优控制技术,可以在线调整自整定PID控制器的增益。尽管该算法在计算上较便宜,但是存在诸如执行器约束和状态约束之类的问题,鉴于控制律的实际实现,这些问题需要解决。还可以观察到,拟议的AUV的NARMAX结构由冗余的回归项组成。为了减轻反向最优自调谐控制方案的上述局限性,提出了一种约束自适应控制方案,该方案采用NARMAX结构(MR-NARMAX)的最小表示来捕获AUV动态。使用正向回归正交最小二乘算法识别MR-NARMAX结构的回归器。此外,使用RELS算法在每个采样时间识别AUV的MRNARMAX模型结构的参数。使用所需的路径参数和确定的动力学,定义了一个误差目标函数,该函数将被最小化。将具有状态和执行器约束的目标函数的最小化问题表述为凸优化问题。使用二次编程技术解决了该优化问题。在仿真中然后在原型AUV上验证了所提出的基于MR-NARMAX的自适应控制。从获得的结果可以看出,该算法可以成功跟踪所需的航向。但是,所提出的控制算法在计算上是昂贵的,因为要在每个采样时刻解决优化问题。为了减少计算时间,使用多参数编程的概念开发了显式模型预测控制策略。基于Lyapunov的反推控制器设计为生成所需的偏航速度,以便将AUV转向所需的路径。使用确定的NARMAX模型设计此显式模型预测控制器,以跟踪所需的偏航速度。提出的显式MPC算法首先在仿真中实现,然后在原型AUV中实现。从仿真和实验结果可以发现,该控制器具有较少的计算时间,并且在显示良好跟踪性能的同时考虑了状态和执行器约束。

著录项

  • 作者

    Rout Raja;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号