首页> 外文OA文献 >Surface functionalization with amino based self-assembled monolayers : tailoring electrode/molecule interfaces for organic electronics
【2h】

Surface functionalization with amino based self-assembled monolayers : tailoring electrode/molecule interfaces for organic electronics

机译:氨基自组装单分子层的表面功能化:为有机电子产品定制电极/分子界面

摘要

Control of the energetics at interfaces is one of the key steps that improve the efficiency of light-emitting and energy-conversion devices based on organic materials. In this context, the present work is embedded in the field of organic electronics with a special focus on the electrode/semiconductor interface. Efficient electron injection and extraction is still a crucial mechanism that deserves improvement. Electron transport through this interface is dominated by the energetic injection barrier Delta_e. In order to gain control of this barrier, polar molecules have been used in this thesis to tailor the work function of the electrode. Three topics are addressed: (i) Understanding the chemical and electrical interface of N,N-dialkyl dithiocarbamates (CnDTC) on the noble metals Au, Ag and Cu. (ii) Work function tuning using tailor-made dithiocarbamates. (iii) Introduction of first results to generate low work functions of the transparent conductive indium tin oxide (ITO) based on a modified chemical structure of DTCs. To study these systems, a combination of X-ray and ultra-violet photoemission spectroscopy (XPS/UPS) with additional results from density functional theory (DFT) has been employed. Charge transport in electronic devices has been investigated using organic thin film transistors based on the n-type material PTCDI-C13.(i) Prior to this thesis, the class of dithiocarbamates (DTC) have been reported by our research group to produce very low work functions of gold down to 3.2 eV. This result marks the starting point for the present work. The assembly of N,N-dialkyl dithiocarbamates on the three noble metals Au, Ag and Cu has been analyzed with XPS. Therein, densely packed monolayers are identified on Au and Ag, while a disordered layer is observed on Cu. Nonetheless, a common work function of 3.5 eV is revealed for CnDTC with n = 4 on all metals with UPS. Only those molecules with the shortest alkyl chains, i.e. n = {1,2}, were able to achieve 3.2 eV on Au and Ag. The final work function of the modified metals results from a complex interplay of molecular arrangement (surface coverage, orientation), interface dipole formation and the energy level alignment at the interface. The detailed comparison of C2DTC as a model system on the three noble metals generates a deeper insight into the chemical and electronic structure. Based on experimental and theoretical results, a common hybridization of the frontier S 3p orbital with those of the frontier metal d-states is identified to generate a metal/molecule interface state, that remains irrespective of the initial metal work function.(ii) A new set of dithiocarbamates are introduced and the effect of different polar groups attached to the molecular backbone is discussed. The molecular structure of dithiocarbamates has been modified using, among others, aromatic and fluorinated substitutions to induce different dipole moments. These directly affect the resulting work function of a modified electrode and enables the generation of a broad range of available work function values for noble metals using differently substituted dithiocarbamates.(iii) At last, the step towards modification of transparent conductive oxides based on the molecular structure of dithiocarbamates is explored for the commonly used indium tin oxide (ITO) as substrate. For metal oxides, a different linker group is required to bind to this kind of surface. Therefore, amine based carboxylic acids have been investigated as first candidates to lower the work function of ITO. A reduction down to 4.0 eV is demonstrated. This result may serve as guideline to create new surface modifiers that should generate even lower work functions similar to those of dithiocarbamates on noble metals.
机译:控制界面上的能量是提高基于有机材料的发光和能量转换设备效率的关键步骤之一。在这种情况下,当前的工作被嵌入到有机电子领域,特别着重于电极/半导体接口。有效的电子注入和提取仍然是值得改进的关键机制。通过该界面的电子传输受高能注入势垒Delta_e支配。为了控制该势垒,在本论文中已经使用极性分子来调整电极的功函数。涉及三个主题:(i)了解N,N-二烷基二硫代氨基甲酸酯(CnDTC)在贵金属Au,Ag和Cu上的化学和电界面。 (ii)使用量身定制的二硫代氨基甲酸酯调节功函数。 (iii)引入第一个结果,以基于DTC的改良化学结构生成透明导电铟锡氧化物(ITO)的低功函。为了研究这些系统,已经使用了X射线和紫外光发射光谱(XPS / UPS)的结合以及密度泛函理论(DFT)的其他结果。已经使用基于n型材料PTCDI-C13的有机薄膜晶体管研究了电子设备中的电荷传输。(i)在此之前,我们的研究小组报告了二硫代氨基甲酸酯(DTC)的类别,其产生的电子很低黄金的工作功能降至3.2 eV。这一结果标志着当前工作的起点。用XPS分析了N,N-二烷基二硫代氨基甲酸酯在三种贵金属Au,Ag和Cu上的组装。其中,在Au和Ag上发现了密集堆积的单层,而在Cu上观察到无序层。尽管如此,对于使用UPS的所有金属,n> = 4的CnDTC的通用功函数为3.5 eV。只有那些烷基链最短的分子,即n = {1,2},才能在Au和Ag上达到3.2 eV。改性金属的最终功函数是由分子排列(表面覆盖率,取向),界面偶极子形成和界面能级排列的复杂相互作用造成的。将C2DTC作为模型系统对三种贵金属的详细比较,可以更深入地了解化学和电子结构。根据实验和理论结果,确定了前沿S 3p轨道与前沿金属d-态的常见杂化以生成金属/分子界面态,该态与初始金属功函数无关。(ii)A引入了一组新的二硫代氨基甲酸酯,并讨论了连接在分子骨架上的不同极性基团的作用。二硫代氨基甲酸酯的分子结构已使用芳香和氟化取代进行了修饰,以诱导不同的偶极矩。这些直接影响修饰电极的最终功函,并能够使用不同取代的二硫代氨基甲酸酯生成贵金属的各种可用功函值。(iii)最后,基于分子的透明导电氧化物的修饰步骤探索了常用的铟锡氧化物(ITO)为底物的二硫代氨基甲酸酯的结构。对于金属氧化物,需要不同的连接基团才能与这种表面结合。因此,已经研究了胺基羧酸作为降低ITO功函的首选。已证明降低到4.0 eV。该结果可作为创建新表面改性剂的指南,该表面改性剂应产生甚至更低的功函数,类似于贵金属上的二硫代氨基甲酸酯。

著录项

  • 作者

    Meyer Dominik;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号