首页> 外文OA文献 >Griffermittlung für anthropomorphe Endeffektoren mit Hilfe von geometrischem Vorwissen
【2h】

Griffermittlung für anthropomorphe Endeffektoren mit Hilfe von geometrischem Vorwissen

机译:借助先前的几何知识确定拟人化末端执行器的握力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent technological advancements increase the commercial availability of autonomous mobile systems, which can operate in a household environment. At present, they are still lacking the ability to recognize and grasp a priori unknown objects, which restricts their field of application. The reason for this deficiency is the inability of these systems to adequately determine the state of the environment on basis of sensor data. Recent approaches for image based object recognition use a priori knowledge in order to identify objects. This knowledge is usually based on specific image features like texture, although geometric data is required to determine a suitable grasp. Even if the exact geometry of the objects is known, the available methods for determining anthropomorphic grasps require time-consuming calculations, thus restricting real time application. In order to grasp a priori unknown objects, this thesis presents a new object representation, which describes the object shape using a topology of geometrical solids. Contrary to the exact quantitative nature of recent feature representations, this approach provides a qualitative description of the object shape without depending on specific color data. Thus, geometrically similar objects with varying dimensions can be encoded with a single object representation. In addition, grasping strategies are linked to the solids, thus removing the necessity to calculate the end effector configuration during the grasp process. The proposed object representation does not contain any specific image features, which would allow for a direct comparison between a priori knowledge and examined object. Instead, the geometrical bodies have to be identified in the image data. Their scale and pose can vary and some bodies can be partially or totally occluded by others. The recognition of an object is based on a novel concept, which identifies the topology of the geometrical bodies using the object silhouette as image feature. Point distribution models encode all possible geometric variations for the silhouettes of a solid. During object recognition, the object silhouette is separated into contour parts, which are matched to the known point distribution models using active shape models. A recursive algorithm separates the silhouette until all contour segments were successfully matched. In order to cover all solids of the topology, the system performs this analysis on image data acquired from three different viewpoints. The collected shape information is finally used to deduce the object type, its pose and a suitable grasp strategy. The approach was evaluated using the DLR-Hand. A hardware device of this anthropomorphic end effector was not available. Therefore, the evaluation took place in a virtual environment using 3D models of the end effector and household objects. This approach simplified the problem of image segmentation. Of 17 different objects, which were lying in known position and unknown orientation on a flat surface, 16 were identified correctly. Due to delays in the control of the end effector pose, 18 out of 133 different grasps did not create a stable fixation. The results show that objects can be recognized using a qualitative description of their shape as a priori knowledge. In contrast to classical feature based approaches, this kind of representation allows the storage and usage of predefined grasp strategies without performing a time-consuming online calculation of the optimal grasp.
机译:最近的技术进步增加了可在家庭环境中运行的自主移动系统的商业可用性。目前,它们仍然缺乏识别和把握先验未知物体的能力,这限制了它们的应用领域。这种缺陷的原因是这些系统无法根据传感器数据来充分确定环境状态。用于基于图像的物体识别的最新方法使用先验知识来识别物体。尽管需要几何数据来确定合适的抓地力,但是这些知识通常基于特定的图像特征(例如纹理)。即使已知对象的确切几何形状,用于确定拟人化抓地力的可用方法也需要耗时的计算,从而限制了实时应用。为了掌握先验未知物体,本文提出了一种新的物体表示形式,该物体表示形式使用几何固体拓扑来描述。与最近的特征表示的确切定量性质相反,这种方法无需依赖特定的颜色数据即可对物体形状进行定性描述。因此,可以用单个对象表示来编码尺寸变化的几何相似对象。此外,将抓取策略链接到实体,从而消除了在抓取过程中计算末端执行器配置的必要性。所提出的对象表示不包含任何特定的图像特征,这将允许先验知识与被检查对象之间的直接比较。相反,必须在图像数据中识别几何体。它们的大小和姿势可能会有所不同,有些身体可能会部分或全部被其他物体遮挡。物体的识别基于一个新颖的概念,该概念使用物体轮廓作为图像特征来识别几何体的拓扑。点分布模型对实体的轮廓进行所有可能的几何变化编码。在对象识别期间,将对象轮廓分为轮廓部分,这些轮廓部分使用活动形状模型与已知的点分布模型匹配。递归算法将轮廓分离,直到所有轮廓线段都成功匹配为止。为了覆盖拓扑的所有实体,系统对从三个不同角度获取的图像数据执行此分析。最终,所收集的形状信息将用于推断对象类型,其姿势和合适的抓握策略。使用DLR-Hand对方法进行了评估。该拟人化末端执行器的硬件设备不可用。因此,评估是在虚拟环境中使用末端执行器和家用物品的3D模型进行的。这种方法简化了图像分割的问题。在17个不同的物体(位于已知位置和未知方向的平面上)中,有16个被正确识别。由于末端执行器姿势控制的延迟,在133个不同的抓握中,有18个未产生稳定的固定。结果表明,可以通过对物体形状的定性描述作为先验知识来识别物体。与经典的基于特征的方法相比,这种表示方式允许存储和使用预定义的抓紧策略,而无需执行耗时的在线最佳抓紧计算。

著录项

  • 作者

    Bley Florian;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号