首页> 外文OA文献 >Detection and tracking of multiple targets using wireless sensor networks - Detección y seguimiento de múltiples blancos en redes inalámbricas de sensores
【2h】

Detection and tracking of multiple targets using wireless sensor networks - Detección y seguimiento de múltiples blancos en redes inalámbricas de sensores

机译:使用无线传感器网络检测和跟踪多个目标-在无线传感器网络中检测和跟踪多个目标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This Ph.D. thesis is concerned with the development of algorithms for the detection and tracking of multiple targets using wireless sensor networks from the Bayesian standpoint. This is achieved by calculating the probability density function (PDF) of the multitarget state given the sensor measurements (posterior PDF) as it includes all the useful information to perform these tasks. The models of the target dynamics and the sensor measurements are usually nonlinear/non-Gaussian. Therefore, the posterior PDF cannot be calculated in closed form and approximations need to be made. Particle filters' approximations to the posterior PDF are convergent if the number of particles tends to infinity. However, in a practical situation, the computer power available is limited. As a result, the number of particles is bounded and particle filter performance is not guaranteed to be high. This decrease in performance due to the limited computational power is even more acute in a multiple target situation because of the high dimension of the state. ududTherefore, this thesis focuses on the development of particle filtering techniques with lower computational burden and higher performance than previously developed ones. Three different scenarios are considered: the detection and tracking of an unknown and variable number of targets using a sensor network, the tracking of targets when there is uncertainty in the sensor positions and the tracking of targets when a non-synchronised sensor network is used.ududAs regards the detection and tracking of an unknown and variable number of targets, a particle filter with two layers is proposed to detect targets and an efficient algorithm, called the parallel partition method, is developed to track the detected targets. Also, a technique to extract target labelling information when there are two targets is proposed. That is, the filter is able to decide which target is which and determine the probability of error.ududThe tracking of targets when there is uncertainty in the sensor positions is carried out by simultaneously localising the sensors and tracking the targets using simultaneous localisation and mapping (SLAM) techniques, traditionally used in the field of robotics. However, the multiple target nature of the problem implies that traditional SLAM techniques are not suitable and a new technique, which is based on the parallel partition method, is proposed to overcome the problems of conventional SLAM techniques. Additionally, the truncated Kalman filter also presented in this thesis is of great importance to estimate the positions of the sensors and is shown to be a very useful filtering technique that can be applied to a variety of filtering problems.ududWhen the sensors are not synchronised, conventional particle filtering techniques have a large computational load. Therefore, in this thesis, the asynchronous particle filter is proposed to lower their computational burden while providing accurate estimates.
机译:本博士从贝叶斯的角度出发,本文涉及使用无线传感器网络检测和跟踪多个目标的算法的开发。这是通过在给定传感器测量值(后PDF)的情况下计算多目标状态的概率密度函数(PDF)来实现的,因为该函数包括执行这些任务的所有有用信息。目标动力学和传感器测量的模型通常是非线性/非高斯模型。因此,后PDF不能以封闭形式进行计算,需要进行近似计算。如果粒子数趋于无穷大,则粒子滤波器对后PDF的近似收敛。但是,在实际情况下,可用的计算机能力是有限的。结果,颗粒的数量受到限制,并且不能保证颗粒过滤器的性能很高。由于状态的高维度,由于有限的计算能力而导致的性能下降在多目标情况下甚至更为严重。 ud ud因此,本论文着重于开发比以前开发的方法具有更低的计算负担和更高的性能的粒子过滤技术。考虑了三种不同的情况:使用传感器网络检测和跟踪未知数量和可变数量的目标;在传感器位置存在不确定性时跟踪目标;在使用非同步传感器网络时跟踪目标。关于未知数量和可变数量目标的检测和跟踪,提出了一种具有两层的粒子过滤器来检测目标,并开发了一种有效的算法(称为并行划分方法)来跟踪检测到的目标。此外,提出了一种在存在两个目标时提取目标标签信息的技术。也就是说,过滤器能够确定哪个目标是哪个,并确定错误的可能性。 ud ud当传感器位置存在不确定性时,可以通过同时定位传感器并使用同时定位来跟踪目标来跟踪目标和映射(SLAM)技术,通常用于机器人技术领域。然而,该问题的多目标性质意味着传统的SLAM技术不合适,因此提出了一种基于并行分区方法的新技术来克服传统SLAM技术的问题。此外,本文中提出的截短卡尔曼滤波器对于估计传感器的位置也非常重要,并且被证明是一种非常有用的滤波技术,可以应用于各种滤波问题。传统的粒子过滤技术不同步,因此计算量很大。因此,本文提出了一种异步粒子滤波算法,以减少其计算量,同时提供准确的估计。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号