首页> 外文OA文献 >Comparing supervised learning methods for classifying sex, age, context and individual Mudi dogs from barking
【2h】

Comparing supervised learning methods for classifying sex, age, context and individual Mudi dogs from barking

机译:比较监督学习方法以区分性别,年龄,背景和个别穆迪狗吠叫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Barking is perhaps the most characteristic formudof vocalization in dogs; however, very little is known aboutudits role in the intraspecific communication of this species.udBesides the obvious need for ethological research, both inudthe field and in the laboratory, the possible informationudcontent of barks can also be explored by computerizedudacoustic analyses. This study compares four differentudsupervised learning methods (naive Bayes, classificationudtrees, k-nearest neighbors and logistic regression) combinedudwith three strategies for selecting variables (alludvariables, filter and wrapper feature subset selections) toudclassify Mudi dogs by sex, age, context and individualudfrom their barks. The classification accuracy of the modelsudobtained was estimated by means of K-fold cross-validation.udPercentages of correct classifications were 85.13 %udfor determining sex, 80.25 % for predicting age (recodifiedudas young, adult and old), 55.50 % for classifying contextsud(seven situations) and 67.63 % for recognizing individualsud(8 dogs), so the results are encouraging. The best-performingudmethod was k-nearest neighbors following audwrapper feature selection approach. The results for classifyingudcontexts and recognizing individual dogs were betterudwith this method than they were for other approachesudreported in the specialized literature. This is the first timeudthat the sex and age of domestic dogs have been predictedudwith the help of sound analysis. This study shows that dogudbarks carry ample information regarding the caller’sudindexical features. Our computerized analysis providesudindirect proof that barks may serve as an important sourceudof information for dogs as well.
机译:吠叫也许是狗发声的最典型形式。然而,对于这种物种在种内交流中的作用,人们了解得很少。 ud除了需要在人类学领域和实验室进行行为学研究外,还可以通过计算机化的方法来探索树皮的可能信息 udcontent。 udacoustic分析。这项研究比较了四种不同的 udsupervised学习方法(朴素贝叶斯,分类 udtree,k最近邻和logistic回归) ud与三种选择变量(所有 udvariable,过滤器和包装特征子集选择)的策略来对Mudi狗进行分类按性别,年龄,背景和个人树皮分类。通过K-fold交叉验证估算模型的分类准确性。 ud正确分类的百分比为:性别确定的ud为85.13%,ud(正确的年龄为年轻人,成人和年龄的年龄为55.50) %用于分类上下文 ud(七种情况),67.63%用于识别个人 ud(8条狗),因此结果令人鼓舞。表现最佳的 udmethod是遵循 udwrapper特征选择方法的k最近邻居。用这种方法对上下文进行分类和识别单个狗的结果要比专业文献中未报道的其他方法更好。这是第一次通过声音分析来预测家犬的性别和年龄。这项研究表明,狗皮/树皮具有与呼叫者的 udindexical功能有关的大量信息。我们的计算机分析提供了间接的证据表明,吠声也可以作为狗的重要信息来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号