首页> 外文OA文献 >2-D iteratively reweighted least squares lattice algorithm and its application to defect detection in textured images
【2h】

2-D iteratively reweighted least squares lattice algorithm and its application to defect detection in textured images

机译:二维迭代加权最小二乘格子算法及其在纹理图像缺陷检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a 2-D iteratively reweighted least squares lattice algorithm, which is robust to the outliers, is introduced and is applied to defect detection problem in textured images. First, the philosophy of using different optimization functions that results in weighted least squares solution in the theory of 1-D robust regression is extended to 2-D. Then a new algorithm is derived which combines 2-D robust regression concepts with the 2-D recursive least squares lattice algorithm. With this approach, whatever the probability distribution of the prediction error may be, small weights are assigned to the outliers so that the least squares algorithm will be less sensitive to the outliers. Implementation of the proposed iteratively reweighted least squares lattice algorithm to the problem of defect detection in textured images is then considered. The performance evaluation, in terms of defect detection rate, demonstrates the importance of the proposed algorithm in reducing the effect of the outliers that generally correspond to false alarms in classification of textures as defective or nondefective.
机译:本文提出了一种对异常值具有鲁棒性的二维迭代最小加权最小二乘格子算法,并将其应用于纹理图像中的缺陷检测问题。首先,将一维鲁棒回归理论中使用产生加权最小二乘解的不同优化函数的原理扩展到二维。然后推导了一种新算法,该算法将二维鲁棒回归概念与二维递归最小二乘格子算法相结合。使用这种方法,无论预测误差的概率分布如何,都将较小的权重分配给离群值,以便最小二乘算法对离群值的敏感性降低。然后考虑所提出的迭代加权最小二乘格子算法对纹理图像中缺陷检测问题的实现。就缺陷检测率而言,性能评估证明了所提出算法在降低纹理分类为有缺陷或无缺陷的异常值方面的重要性,这些异常值通常与错误警报相对应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号