首页> 外文OA文献 >Element Free Galerkin Method Using Digraph and Its Application to Creep Nonlinear Problem
【2h】

Element Free Galerkin Method Using Digraph and Its Application to Creep Nonlinear Problem

机译:有向图的无单元Galerkin方法及其在蠕变非线性问题中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The element free Galerkin method (EFGM) is one of the meshless methods proposed by Belytschko, et. al. in 1994. The EFGM is a new numerical method which is expected to be utilized for many problems of the continuum mechanics and for a tool of the seamless system between the CAD and the CAE instead of the finite element method. The EFGM uses the moving least square interpolation (MLSI) for the functional approximation without elements. However the EFGM needs computational time for searching nodes of the MLSI and needs to be provided the integral domain. In this study, the method of the digraph and the Delaunay tessellation are used for the division of the integral domain and the searching nodes. These techniques are useful for the simplification of the analysis and saving the computational time. Furthermore, the EFGM has not been applied to nonlinear problems such as elastic-plastic problems or creep ones under elevated temperature. In this paper, the developed EFGM using the method of the digraph and the Delaunay tesselation is applied to creep nonlinear problems. The results obtained from the EFGM agree well with those of the finite element method.
机译:无元素Galerkin方法(EFGM)是Belytschko等人提出的无网格方法之一。等EFGM是1994年提出的一种新的数值方法,有望代替连续有限元法,用于连续力学的许多问题以及CAD和CAE之间无缝系统的工具。 EFGM使用移动最小二乘内插(MLSI)进行功能近似,而无需元素。然而,EFGM需要用于搜索MLSI的节点的计算时间,并且需要被提供积分域。在这项研究中,使用有向图和Delaunay细分方法将积分域和搜索节点进行划分。这些技术对于简化分析和节省计算时间很有用。此外,EFGM还没有应用于非线性问题,例如在高温下的弹塑性问题或蠕变问题。在本文中,使用图的方法和Delaunay镶嵌技术开发的EFGM被应用于蠕变非线性问题。从EFGM获得的结果与有限元方法的结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号