首页> 外文OA文献 >High power wide bandgap cascode switching circuits
【2h】

High power wide bandgap cascode switching circuits

机译:大功率宽带隙共源共栅开关电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Emerging wide bandgap (WBG) power transistors are capable of improving the efficiency of mains voltage power electronic circuits. Several commercial WBG transistors are now available, but all exhibit undesirable gate drive characteristics. The cascode circuit has been suggested as a solution to this problem: WBG cascodes improve the switching speed, gate characteristics and noise immunity of devices, at the expense of greater on-state resistance. WBG cascodes have not, however, been widely accepted in commercial applications. Previous research has typically been too application-specific, with little practical information available for design engineers wishing to use them. This thesis addresses these shortcomings through a comprehensive investigation of practical design considerations for switch-mode cascode circuits. A SPICE simulation and simplified mathematical model are developed as design tools to give a detailed insight into cascode hard-switching behaviour and to aid cascode optimisation and device selection. The effects of the cascode configuration on static (DC) device performance are quantified for a silicon super-junction (SJ) metal-oxide-semiconductor field-effect transistor (MOSFET), silicon carbide (SiC) junction field-effect transistor JFET and SiC MOSFET. The on-state resistance penalty of the cascode configuration is shown to be modest and potentially mitigated by careful selection of HV transistor gate bias. There are few advantages to using silicon SJ MOSFETs in a cascode configuration, but both SiC MOSFET and JFET cascodes benefit from improved gate drive, reverse conduction and switching characteristics. SiC MOSFETs are shown to be better suited to efficient high temperature operation, while SiC JFETs are more appropriate for high current applications. Cascode switching losses are shown to be reduced compared to standalone devices, although reverse recovery losses can counteract this. Methods of controlling switching transients using gate resistors or feedback capacitors are investigated and shown to be effective. The effects of stray inductance on cascode switching are quantified experimentally for the first time. This corroborates other work and informs the layout of cascode circuits. The resilience of cascodes to severe $rac{dV}{dt}$ is also demonstrated. The findings of this thesis are summarised in a practical design guide aimed at design engineers who wish to use this useful circuit.
机译:新兴的宽带隙(WBG)功率晶体管能够提高电源电压功率电子电路的效率。现在有几种商用的WBG晶体管,但是它们都表现出不良的栅极驱动特性。已建议使用共源共栅电路来解决此问题:WBG共源共栅改善了器件的开关速度,栅极特性和抗噪声能力,但以更大的导通态电阻为代价。然而,WBG共源共栅没有被商业应用广泛接受。以前的研究通常过于针对特定应用,对于希望使用它们的设计工程师来说几乎没有实用信息。本文通过全面研究开关模式共源共栅电路的实际设计考虑因素来解决这些缺点。开发了SPICE仿真和简化的数学模型作为设计工具,以详细了解级联硬切换行为,并有助于级联优化和器件选择。对于硅超结(SJ)金属氧化物半导体场效应晶体管(MOSFET),碳化硅(SiC)结场效应晶体管JFET和SiC,量化了级联配置对静态(DC)器件性能的影响MOSFET。共源共栅配置的导通状态电阻损失显示为适度的,并且可以通过谨慎选择HV晶体管栅极偏置来缓解。在共源共栅配置中使用硅SJ MOSFET几乎没有优势,但是SiC MOSFET和JFET共源共栅都受益于改进的栅极驱动,反向传导和开关特性。 SiC MOSFET被证明更适合高效的高温工作,而SiC JFET则更适合于大电流应用。与独立设备相比,级联开关损耗被证明可以降低,尽管反向恢复损耗可以抵消这一损失。研究了使用栅极电阻器或反馈电容器控制开关瞬变的方法,并证明了其有效。杂散电感对共源共栅开关的影响首次通过实验进行了量化。这证实了其他工作,并告知了共源共栅电路的布局。还显示了级联对严重$ frac {dV} {dt} $的恢复能力。本论文的发现总结在针对设计工程师的实用设计指南中,他们希望使用这种有用的电路。

著录项

  • 作者

    Garsed Philip;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号