首页> 外文OA文献 >From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.
【2h】

From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

机译:从大脑连接组和蛋白质相互作用组中的链接预测到复杂网络中的局部社区范式。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.
机译:增长和重塑会影响复杂系统的网络拓扑,但是缺乏解释现有节点之间如何建立新链接的通用理论,而且对于促进链接预测的拓扑属性知之甚少。在这里,我们研究了仅通过拓扑功能就可以预测网络连通性演变的程度。我们展示了基于链接/社区的策略如何触发实质性的预测改进,因为它考虑了在多个本地社区中组织的几个真实网络的奇异拓扑结构-在这里称为本地社区范式(LCP)的趋势。我们观察到,LCP网络主要是由弱相互作用形成的,并表征了使用自组织作为主要适应策略的异构和动态系统。这些系统似乎旨在通过多个本地模块在全球范围内传递信息和进行处理。相反,非LCP网络具有由强大的交互作用形成的稳定架构,并且似乎是为信息/能量存储至关重要的系统设计的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号