首页> 外文OA文献 >Mixed multiscale finite element methods using approximate global information based on partial upscaling
【2h】

Mixed multiscale finite element methods using approximate global information based on partial upscaling

机译:基于局部放大的近似全局信息的混合多尺度有限元方法

摘要

The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods. © 2009 Springer Science+Business Media B.V.
机译:如果没有尺度分离,则需要在多尺度模拟中使用有限的全局信息。先前的方法需要在全局信息的计算中进行精细的模拟。全局信息的计算是昂贵的。在本文中,我们建议使用基于局部放大的近似全局信息。部分均质化的要求是捕获细规模解决方案中存在的远程(非局部)效应,同时均化一些最小规模。在基函数的计算中捕获了这些最小尺度的本地信息。因此,所提出的方法使我们能够避免在可以均质化的规模上进行计算。这就导致了全局场计算的较粗略的问题。我们分析了所提出方法的收敛性。引入了数学形式主义,该数学形式主义允许估计由于均质化的小比例尺而引起的误差。该方法被用于模拟非均质多孔介质中的两相流。给出了各种渗透率场的数值结果,包括使用两点相关函数生成的结果和来自SPE比较项目的通道化渗透率场(Christie和Blunt,SPE Reserv Evalu Eng 4:308-317,2001)。我们考虑一些简单的案例,在这些案例中,人们可以确定可以均一化的量表。对于更一般的情况,我们建议在尺寸小于构造多尺度基函数的目标粗网格的大小的粗网格上使用放大。这个中间的粗网格提供了部分放大的解决方案,其中包含基本的非本地信息。数值示例表明,与仅使用局部多尺度方法相比,使用近似全局信息可提供更好的准确性。 ©2009 Springer Science + Business Media B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号