首页> 外文OA文献 >Perturbed Strong Stability Preserving Time-Stepping Methods For Hyperbolic PDEs
【2h】

Perturbed Strong Stability Preserving Time-Stepping Methods For Hyperbolic PDEs

机译:双曲偏微分方程的摄动强稳定性保持时间步长方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A plethora of physical phenomena are modelled by hyperbolic partial differentialudequations, for which the exact solution is usually not known. Numerical methodsudare employed to approximate the solution to hyperbolic problems; however, in manyudcases it is difficult to satisfy certain physical properties while maintaining high orderudof accuracy. In this thesis, we develop high-order time-stepping methods thatudare capable of maintaining stability constraints of the solution, when coupled withudsuitable spatial discretizations. Such methods are called strong stability preservingud(SSP) time integrators, and we mainly focus on perturbed methods that use bothudupwind- and downwind-biased spatial discretizations.udFirstly, we introduce a new family of third-order implicit Runge–Kuttas methodsudwith arbitrarily large SSP coefficient. We investigate the stability and accuracy ofudthese methods and we show that they perform well on hyperbolic problems with largeudCFL numbers. Moreover, we extend the analysis of SSP linear multistep methods toudsemi-discretized problems for which different terms on the right-hand side of theudinitial value problem satisfy different forward Euler (or circle) conditions. Optimaludperturbed and additive monotonicity-preserving linear multistep methods are studiedudin the context of such problems. Optimal perturbed methods attain augmentedudmonotonicity-preserving step sizes when the different forward Euler conditions areudtaken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the correspondingudnon-additive SSP linear multistep methods. Furthermore, we develop theudfirst SSP linear multistep methods of order two and three with variable step size, andudstudy their optimality. We describe an optimal step-size strategy and demonstrateudthe effectiveness of these methods on various one- and multi-dimensional problems.udFinally, we establish necessary conditions to preserve the total variation of the solutionudobtained when perturbed methods are applied to boundary value problems.udWe implement a stable treatment of nonreflecting boundary conditions for hyperbolicudproblems that allows high order of accuracy and controls spurious wave reflections.udNumerical examples with high-order perturbed Runge–Kutta methods reveal that thisudtechnique provides a significant improvement in accuracy compared with zero-orderudextrapolation.
机译:大量的物理现象是通过双曲偏微分不等式来建模的,对于它们而言,确切的解决方案通常是未知的。敢于采用数值方法来逼近双曲问题的解;但是,在许多情况下,要维持高阶的udud精度很难满足某些物理性能。在本文中,我们开发了一种高阶时间步长方法,当与适当的空间离散化结合时,它们能够保持解的稳定性约束。这种方法称为强稳定性保持 ud(SSP)时间积分器,我们主要关注同时使用 udupwind和顺风偏置的空间离散化的扰动方法。 ud首先,我们引入了一个新的三阶隐式Runge系列- Kuttas方法具有任意大的SSP系数。我们研究了这些方法的稳定性和准确性,并证明了它们在具有大udCFL数的双曲问题上表现良好。此外,我们将SSP线性多步法的分析扩展到了 udemi半离散化的问题,其中 udinitial值问题右侧的不同项满足不同的正向Euler(或圆)条件。在此类问题的背景下,研究了最优扰动和加性保持单调性的线性多步方法。当考虑到不同的前向欧拉条件时,最优的扰动方法可以获得增强的单调性保持步长。另一方面,我们表明,最佳的SSP加法可以实现保持单调性的步长限制,但没有比相应的 udnon-加法SSP线性多步法更好。此外,我们开发了具有可变步长的二阶和三阶SSP线性多步方法,并研究了它们的最优性。我们描述了一种最佳的步长策略,并论证了这些方法在各种一维和多维问题上的有效性。 ud最后,我们建立了必要的条件来保留解的总变化当将扰动方法应用于边界时获得值问题。 ud我们对双曲 udproblem问题执行了稳定的非反射边界条件处理,可以实现较高的精度并控制杂散波反射。 ud使用高阶扰动Runge–Kutta方法的数值示例表明,此 udtechnique可以提供显着的改进与零阶 udextrapolation相比,精度更高。

著录项

  • 作者

    Hadjimichael Yiannis;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号