首页> 外文会议>AIAA SciTech forum;Aerospace sciences meeting >High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs
【24h】

High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

机译:双曲PDEs的高阶隐式-显式多块时间步法

获取原文

摘要

This work seeks to explore and improve the current time-stepping schemes used to numerically solve model PDEs relevant to computational fluid dynamics (CFD). A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes, which increases the stability with respect to the time step limit. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to the one-dimensional viscous Burger's equation and the two-dimensional advection equation. The method uses second and fourth order accurate summation-by-parts (SBP) finite differences, and a fourth order accurate 6-stage additive Runge-Kutta IMEX time integration scheme. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. An increase in numerical stability, ~65 times greater than the fully explicit scheme, is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of ~10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method developed in this work shows potential for semi-implicitly solving full three-dimensional CFD simulations using direct methods, rather than the widely used iterative methods. This domain partitioning approach achieves this by splitting the computational domain into manageable sizes, or multiple blocks, which are explicitly coupled together.
机译:这项工作旨在探索和改进当前的时间步进方案,该方案用于数值求解与计算流体动力学(CFD)相关的模型PDE。已经使用隐式和显式(IMEX)时间步长Runge-Kutta(RK)方案的组合开发了一种高阶方案,这增加了相对于时间步长限制的稳定性。单独的IMEX方案并不能实现所需的数值稳定性提高,但是当与重叠的分区(多块)域结合使用时,可以观察到稳定性显着提高。为了说明这一点,将重叠分区IMEX(OP IMEX)方案应用于一维粘性Burger's方程和二维对流方程。该方法使用二阶和四阶精确零件总和(SBP)有限差分,以及四阶精确六级加法Runge-Kutta IMEX时间积分方案。 Dirichlet边界条件是使用同时逼近项(SAT)罚分法强加的。数值稳定性的提高是完全显式方案的65倍左右,这证明是可以通过将OP IMEX方法应用于一维Burger's方程来实现的。纯二维对流对流方程的结果表明,使用OP IMEX方法,稳定性提高了显式方案的约10倍。同样,在这项工作中开发的域划分方法显示了使用直接方法(而不是广泛使用的迭代方法)半隐式解决完整三维CFD模拟的潜力。这种域划分方法是通过将计算域划分为可管理的大小或多个显式耦合在一起的块来实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号