首页> 外文OA文献 >Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data
【2h】

Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

机译:具有随机数据的椭圆型偏微分方程有限元逼近的可计算误差估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.
机译:我们推导了具有随机系数的线性椭圆型偏微分方程的有限元逼近的可计算误差估计。在这种设置下,精确的解决方案包含高频内容,而标准的后验误差估计无法捕获这些高频内容。我们基于局部误差指标,针对以标准,连续,分段线性有限元逼近法得出的路径Galerkin和预期正交误差,提出了面向目标的估计。这些新颖的估计值是使用容易验证的假设推导出来的,可以用相对较低的成本进行计算,并且可以应用于电导率假定为对数正态分布且规则性较低的地球物理学中的地下流动问题。一维和二维测试问题的数值实验为我们的理论提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号