首页> 外文OA文献 >Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae
【2h】

Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae

机译:无限可分度量,曲率不等式和曲率公式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The curvature of a contraction T in the Cowen-Douglas class is bounded above by thecurvature of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this thesis, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E corresponding to the operator T in the Cowen-Douglas class which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuplesof operators in the Cowen-Douglas class. Secondly, we obtain an explicit formula for the curvature of the jet bundle of the Hermitian holomorphic bundle E f on a planar domain Ω. Here Ef is assumed to be a pull-back of the tautological bundle on gr(n, H ) by a nondegenerate holomorphic map f :Ω →Gr (n, H ).Clearly, finding relationships amongs the complex geometric invariants inherent in theshort exact sequence 0 → Jk(Ef ) → Jk+1(Ef ) →J k+1(Ef )/ Jk(Ef ) → 0 is an important problem, whereJk(Ef ) represents the k-th order jet bundle. It is known that the Chern classes of these bundles must satisfy c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/ Jk(Ef )). We obtain a refinement of this formula: trace Idnxn ( KJk(Ef )) - trace Idnxn ( KJk-1(Ef ))= KJk(Ef )/ Jk-1(Ef )(z).
机译:Cowen-Douglas类中的收缩T的曲率在上方受到后向移位算子的曲率的限制。然而,通常,满足曲率不等式的操作者不必收缩。在本文中,我们使用更强形式的曲率不等式来刻画一小类收缩。一路上,我们找到了对应于Cowen-Douglas类中的算子T的全纯Hermitian向量束E的度量条件,该条件确保了曲率函数的负定性。我们获得了Cowen-Douglas类中的换乘元组的通用化。其次,我们获得了平面域Ω上的埃尔米特同形束E f的射流束曲率的明确公式。此处,Ef被假定为通过非简并全纯图f:Ω→Gr(n,H)在gr(n,H)上的重言式束的后退。序列0→Jk(Ef)→Jk + 1(Ef)→J k + 1(Ef)/ Jk(Ef)→0是一个重要的问题,其中Jk(Ef)表示第k阶射流束。已知这些束的Chern类必须满足c(Jk + 1(Ef))= c(Jk(Ef))c(Jk + 1(Ef)/ Jk(Ef))。我们对该公式进行了改进:迹线Idnxn(KJk(Ef))-迹线Idnxn(KJk-1(Ef))= KJk(Ef)/ Jk-1(Ef)(z)。

著录项

  • 作者

    Keshari Dinesh Kumar;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号