首页> 外文OA文献 >A Cross-decomposition Scheme with Integrated Primal-dual Multi-cuts for Two-stage Stochastic Programming Investment Planning Problems
【2h】

A Cross-decomposition Scheme with Integrated Primal-dual Multi-cuts for Two-stage Stochastic Programming Investment Planning Problems

机译:两阶段随机规划投资规划问题的集成原始对偶多割的交叉分解方案

摘要

WedescribeadecompositionalgorithmthatcombinesBendersandscenario- based Lagrangean decomposition for two-stage stochastic programming investment planningproblemswithcompleterecourse,wherethefirst-stagevariablesaremixed- integer and the second-stage variables are continuous. The algorithm is based on the cross-decomposition scheme and fully integrates primal and dual information in terms of primal-dual multi-cuts added to the Benders and the Lagrangean mas- ter problems for each scenario. The potential benefits of the cross-decomposition scheme are demonstrated with an illustrative case study for a facility location prob- lemunderdisruptions,wheretheunderlyingLPrelaxationisweak,andhence,multi- cut Benders decomposition converges only slowly. If the LP relaxation is improved by adding a tightening constraint, the performance of multi-cut Benders decomposi- tionimprovesbutthecross-decompositionschemestayscompetitiveandoutperforms Benders for the largest problem instance.
机译:我们描述了一种组合算法,该算法将基于班德斯和基于场景的拉格朗日分解相结合,用于两阶段随机规划投资计划问题,且其方法是完全的,其中第一阶段变量为混合整数,第二阶段变量为连续变量。该算法基于交叉分解方案,并且针对每种情况,根据添加到Benders和Lagrangean主要问题中的原始-双重多重切割,完全集成了原始和双重信息。交叉分解方案的潜在好处通过设施位置下的扰动问题示例性案例研究得到了证明,其中基础层LP松弛弱,因此,多级Benders分解仅缓慢收敛。如果通过增加紧缩约束来改善LP松弛,则对于最大的问题实例,多次切割Benders分解的性能将得到改善,但是交叉分解化学方法的竞争性和表现将优于Benders。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号