首页> 外文OA文献 >Examining the Impact of Contextual Ambiguity on Search Advertising Keyword Performance: A Topic Model Approach
【2h】

Examining the Impact of Contextual Ambiguity on Search Advertising Keyword Performance: A Topic Model Approach

机译:研究上下文歧义性对搜索广告关键字性能的影响:主题模型方法

摘要

In this paper, we explore how the contextual ambiguity of a search can affect a keyword’s performance. The context of consumer search is often unobserved and the prediction of it can be nontrivial. Consumer search contexts may vary even when consumers are searching for the same keyword. Due to the ambiguity of a keyword, a large portion of the ads displayed may fall outside a particular consumer’s interest, potentially leading to low click-through rates on search engines. In our study, we propose an automatic way of examining keyword contextual ambiguity based on probabilistic topic models from machine learning and computational linguistics. We quantify the effect of contextual ambiguity on keyword click-through performance using a hierarchical Bayesian model that allows for topic-specific effect and nonlinear position effect. We validate our study using a novel dataset from a major search engine that contains information on consumer click activities for 12,790 distinct keywords across multiple product categories from over 4.6 million impressions. We find that consumer click behaviors vary significant across keywords, and keyword category and the contextual ambiguity of the keywords significantly affect such variation. Specifically, higher contextual ambiguity can lead to a higher click-through rate (CTR) on top-positioned ads, but the CTR tends to decay faster with position. Therefore, the overall effect of contextual ambiguity on CTR varies across positions. Our study has the potential to help advertisers design keyword portfolios and bidding strategy by extracting contextual ambiguity and other semantic characteristics of keywords based on large-scale analytics from unstructured data. It can also help search engines improve the quality of displayed ads in response to a consumer search query.
机译:在本文中,我们探讨了搜索的上下文歧义如何影响关键字的效果。消费者搜索的上下文通常是不可观察的,并且对其的预测可能是不平凡的。消费者搜索上下文可能会有所不同,即使消费者正在搜索相同的关键字也是如此。由于关键字的含糊不清,因此所显示的广告中有很大一部分可能不在特定消费者的兴趣范围之内,有可能导致搜索引擎的点击率偏低。在我们的研究中,我们提出了一种基于机器学习和计算语言学的概率主题模型的自动检查关键字上下文歧义的方法。我们使用允许主题特定的效果和非线性位置效果的分层贝叶斯模型来量化上下文歧义性对关键字点击效果的影响。我们使用来自主要搜索引擎的新颖数据集来验证我们的研究,该数据集包含有关来自460万次展示的跨多个产品类别的12,790个不同关键字的消费者点击活动的信息。我们发现,消费者的点击行为在各个关键字之间变化很大,并且关键字类别和关键字的上下文歧义会明显影响这种变化。具体而言,较高的上下文歧义性可以导致排名靠前的广告具有较高的点击率(CTR),但CTR倾向于随位置而更快地衰减。因此,上下文歧义性对点击率的总体影响因职位而异。我们的研究有潜力通过从非结构化数据中进行大规模分析来提取上下文的歧义性和关键字的其他语义特征,从而帮助广告商设计关键字组合和出价策略。它还可以帮助搜索引擎响应消费者搜索查询来提高显示广告的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号