首页> 外文OA文献 >Analysis of Twitter data for postmarketing surveillance in pharmacovigilance
【2h】

Analysis of Twitter data for postmarketing surveillance in pharmacovigilance

机译:分析Twitter数据以进行药物警戒的上市后监控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Postmarketing surveillance (PMS) has the vital aim to monitor effects of drugs af- ter release for use by the general pop- ulation, but suffers from under-reporting and limited coverage. Automatic meth- ods for detecting drug effect reports, es- pecially for social media, could vastly in- crease the scope of PMS. Very few auto- matic PMS methods are currently avail- able, in particular for the messy text types encountered on Twitter. In this paper we describe first results for developing PMS methods specifically for tweets. We de- scribe the corpus of 125,669 tweets we have created and annotated to train and test the tools. We find that generic tools per- form well for tweet-level language iden- tification and tweet-level sentiment anal- ysis (both 0.94 F1-Score). For detection of effect mentions we are able to achieve 0.87 F1-Score, while effect-level adverse- vs.-beneficial analysis proves harder with an F1-Score of 0.64. Among other things, our results indicate that MetaMap seman- tic types provide a very promising ba- sis for identifying drug effect mentions in tweets.
机译:上市后监视(PMS)的主要目标是监视释放后供普通人群使用的药物的效果,但是它受到漏报和覆盖范围有限的困扰。用于检测药物效应报告的自动方法,尤其是用于社交媒体的方法,可以极大地扩大PMS的范围。当前,很少有自动PMS方法,尤其是在Twitter上遇到的混乱文本类型时。在本文中,我们描述了专门针对推文开发PMS方法的初步结果。我们描述了已创建的125669条推文的语料库,并对其进行了注释,以训练和测试这些工具。我们发现通用工具在推文级别的语言识别和推文级别的情感分析(两者均为0.94 F1-Score)上表现良好。对于提及效果的检测,我们能够达到0.87的F1-分数,而效果水平的不利与受益的分析证明F1-分数为0.64更加困难。除其他外,我们的结果表明,MetaMap语义类型为识别推文中提及的药物效应提供了非常有希望的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号