首页> 外文OA文献 >Neural Network-Based Approach for Analysis of Rigid Pavement Systems Using Deflection Data
【2h】

Neural Network-Based Approach for Analysis of Rigid Pavement Systems Using Deflection Data

机译:基于神经网络的基于挠度数据的刚性路面系统分析方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on the development of backcalculation models based on artificial neural networks (ANNs) for predicting the layer moduli of the jointed plain concrete pavements, that is, the elastic modulus of the portland cement concrete (PCC) layer and the coefficient of subgrade reaction for the pavement foundation. The ANN-based models were trained to predict the layer moduli by using the falling-weight deflectometer (FWD) deflection basin data and the thickness of the concrete pavement structure. The ISLAB2000 finite element program, extensively tested and validated for more than 20 years, has been employed as an advanced structural model for solving the responses of the rigid pavement systems and generating a knowledge database. ANN-based backcalculation models trained with the results from the ISLAB2000 solutions have been found to be viable alternatives for rapid assessment (capable of analyzing 100,000 FWD deflection profiles in a single second) of the rigid pavement systems. The trained ANN-based models are capable of predicting the concrete pavement parameters with very low (u3c0.4%) average absolute error values. The ANN model predictions and closed-form solutions were compared through the use of the FWD deflection data, and the results are summarized in the paper. In addition, a sensitivity study was conducted to verify the significance of the layer thicknesses and the effect of bonding between the PCC and the base layer in the backcalculation procedure. The results of this study demonstrated that the ANN-based models are capable of successfully predicting the rigid pavement layer moduli with high accuracy.
机译:本文重点研究基于人工神经网络(ANN)的反算模型的发展,以预测接缝的普通混凝土路面的层模量,即波特兰水泥混凝土(PCC)层的弹性模量和路基反应系数为路面基础。使用降重式挠度计(FWD)挠度池数据和混凝土路面结构的厚度,对基于ANN的模型进行了训练,以预测层模量。经过20多年的广泛测试和验证的ISLAB2000有限元程序已被用作解决刚性路面系统响应并生成知识数据库的高级结构模型。已经发现,使用ISLAB2000解决方案的结果进行训练的基于ANN的反算模型是快速评估刚性路面系统(能够在一秒钟内分析100,000 FWD挠度剖面)的可行替代方案。经过训练的基于ANN的模型能够预测平均绝对误差值非常低( u3c0.4%)的混凝土路面参数。利用FWD挠度数据比较了ANN模型的预测结果和闭式解,并对结果进行了总结。另外,进行了敏感性研究,以验证层厚度的重要性以及在反算过程中PCC和基础层之间的粘合作用。这项研究的结果表明,基于ANN的模型能够成功地高精度预测刚性路面层的模量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号