首页> 外文OA文献 >Solving large dense linear least squares problems on parallel distributed computers. Application to the Earth's gravity field computation.
【2h】

Solving large dense linear least squares problems on parallel distributed computers. Application to the Earth's gravity field computation.

机译:在并行分布式计算机上解决大型密集线性最小二乘问题。在地球重力场计算中的应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, we present our research in high performance scientific computing for linear least squares. More precisely we are concerned with developing efficient parallel software that can solve very large dense linear least squares problems and with providing numerical tools that can assess the quality of the solution. This thesis is also a contribution to the GOCE3 mission that strives for a very accurate model of the Earth's gravity field. This satellite is scheduled for launch in 2007 and in this respect, our work represents a step in the definition of algorithms for the project. We present an overview of the numerical strategies that can be used for updating the solution with new observations coming from GOCE mesurements. Then we describe a parallel distributed solver that we implemented in order to be used in the CNES4 software package for orbit determination and gravity field computation. This solver compares well in terms of performance with the standard parallel libraries ScaLAPACK and PLAPACK on the operational platforms used in the space industry while saving about half the memory, thanks to taking into account the symmetry of the problem. In order to improve the scalability and the portability of our solver, we define a packed distributed format that is based on ScaLAPACK kernel routines. This approach is a significant improvement since there is no packed distributed format available for symmetric or triangular matrices in the existing dense parallel libraries. Examples are given for the Cholesky factorization and for the updating of a QR factorization. This format can easily be extended to other linear algebra calculations. This thesis also contains new results in the area of sensitivity analysis for linear least squares resulting from parameter estimation problems. Specifically we provide a closed formula, bounds of correct order of magnitude and also statistical estimates that enable us to evaluate the condition number of linear functionals of least squares solution. The choice between the different expressions will depend on the problem size and on the desired level of accuracy.
机译:在本文中,我们介绍了针对线性最小二乘的高性能科学计算的研究。更确切地说,我们关注开发可解决非常大的密集线性最小二乘问题的高效并行软件,并提供可评估解决方案质量的数值工具。这篇论文也是对GOCE3任务的一个贡献,该任务致力于建立一个非常精确的地球重力场模型。该卫星定于2007年发射,在这方面,我们的工作代表了该项目算法定义的一步。我们介绍了可以用于通过GOCE测量得出的新观测值更新解决方案的数值策略的概述。然后,我们描述了一个并行分布式求解器,我们将其实现以便在CNES4软件包中用于轨道确定和重力场计算。由于考虑了问题的对称性,该求解器在性能上与航天工业中使用的操作平台上的标准并行库ScaLAPACK和PLAPACK进行了很好的比较,同时节省了大约一半的内存。为了提高求解器的可伸缩性和可移植性,我们定义了一种基于ScaLAPACK内核例程的压缩分布式格式。这种方法是一项重大改进,因为在现有的密集并行库中没有可用于对称或三角形矩阵的打包分布式格式。给出了Cholesky分解和QR分解更新的示例。此格式可以轻松扩展到其他线性代数计算。本文还对由参数估计问题引起的线性最小二乘的灵敏度分析领域中的新结果。具体来说,我们提供了一个封闭公式,正确数量级的范围以及统计估计,使我们能够评估最小二乘解的线性泛函的条件数。不同表达式之间的选择将取决于问题的大小和所需的准确性水平。

著录项

  • 作者

    Baboulin Marc;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号