首页> 外文期刊>Journal of algorithms & computational technology >Parallel tools for solving incremental dense least squares problems: application to space geodesy
【24h】

Parallel tools for solving incremental dense least squares problems: application to space geodesy

机译:解决增量密集最小二乘问题的并行工具:在空间大地测量学中的应用

获取原文
获取原文并翻译 | 示例

摘要

We present a parallel distributed solver that enables us to solve incremental dense least squares arising in some parameter estimation problems. This solver is based on ScaLAPACK [8] and PBLAS [9] kernel routines. In the incremental process, the observations are collected periodically and the solver updates the solution with new observations using a QR factorization algorithm. It uses a recently defined distributed packed format [3] that handles symmetric or triangular matrices in ScaLAPACK-based implementations. We provide performance analysis on IBM pSeries 690. We also present an example of application in the area of space geodesy for gravity field computations with some experimental results.
机译:我们提出了一个并行分布式求解器,使我们能够解决在某些参数估计问题中出现的增量密集最小二乘。该求解器基于ScaLAPACK [8]和PBLAS [9]内核例程。在增量过程中,定期收集观测值,并且求解器使用QR分解算法使用新观测值更新解决方案。它使用最近定义的分布式打包格式[3],该格式在基于ScaLAPACK的实现中处理对称或三角矩阵。我们在IBM pSeries 690上提供性能分析。我们还提供了一个在空间大地测量学领域用于重力场计算的示例,并提供了一些实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号