首页> 外文OA文献 >Intelligent Real-Time Decision Support Systems for Road Traffic Management. Multi-agent based Fuzzy Neural Networks with a GA learning approach in managing control actions of road traffic centres.
【2h】

Intelligent Real-Time Decision Support Systems for Road Traffic Management. Multi-agent based Fuzzy Neural Networks with a GA learning approach in managing control actions of road traffic centres.

机译:道路交通管理的智能实时决策支持系统。基于遗传算法学习方法的基于多主体的模糊神经网络,用于管理道路交通中心的控制行为。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The selection of the most appropriate traffic control actions to solve non-recurrent traffic congestion is a complex task which requires significant expert knowledge and experience. In this thesis we develop and investigate the application of an intelligent traffic control decision support system for road traffic management to assist the human operator to identify the most suitable control actions in order to deal with non-recurrent and non-predictable traffic congestion in a real-time situation. Our intelligent system employs a Fuzzy Neural Networks (FNN) Tool that combines the capabilities of fuzzy reasoning in measuring imprecise and dynamic factors and the capabilities of neural networks in terms of learning processes. In this work we present an effective learning approach with regard to the FNN-Tool, which consists of three stages: initializing the membership functions of both input and output variables by determining their centres and widths using self-organizing algorithms; employing an evolutionary Genetic Algorithm (GA) based learning method to identify the fuzzy rules; tune the derived structure and parameters using the back-propagation learning algorithm. We evaluate experimentally the performance and the prediction capability of this three-stage learning approach using well-known benchmark examples. Experimental results demonstrate the ability of the learning approach to identify all relevant fuzzy rules from the training data. A comparative analysis shows that the proposed learning approach has a higher degree of predictive capability than existing models. We also address the scalability issue of our intelligent traffic control decision support system by using a multi-agent based approach. The large network is divided into sub-networks, each of which has its own associated agent. Finally, our intelligent traffic control decision support system is applied to a number of road traffic case studies using the traffic network in Riyadh, in Saudi Arabia. The results obtained are promising and show that our intelligent traffic control decision support system can provide an effective support for real-time traffic control.
机译:选择最合适的交通控制措施以解决非经常性交通拥堵是一项复杂的任务,需要大量的专家知识和经验。在本文中,我们开发并研究了智能交通控制决策支持系统在道路交通管理中的应用,以帮助操作员识别最合适的控制措施,以应对实际中的非经常性和不可预测的交通拥堵。时间情况。我们的智能系统采用模糊神经网络(FNN)工具,该工具结合了模糊推理在测量不精确和动态因素方面的功能以及在学习过程中神经网络的功能。在这项工作中,我们针对FNN-Tool提供了一种有效的学习方法,该方法包括三个阶段:通过使用自组织算法确定输入和输出变量的中心和宽度来初始化输入和输出变量的隶属函数;采用基于进化遗传算法(GA)的学习方法来识别模糊规则;使用反向传播学习算法调整导出的结构和参数。我们使用著名的基准示例通过实验评估此三阶段学习方法的性能和预测能力。实验结果证明了这种学习方法能够从训练数据中识别所有相关的模糊规则的能力。对比分析表明,所提出的学习方法比现有模型具有更高的预测能力。我们还通过使用基于多代理的方法来解决我们的智能交通控制决策支持系统的可伸缩性问题。大型网络分为子网,每个子网都有自己的关联代理。最后,我们的智能交通控制决策支持系统通过沙特阿拉伯利雅得的交通网络被应用于许多道路交通案例研究。获得的结果令人鼓舞,表明我们的智能交通控制决策支持系统可以为实时交通控制提供有效的支持。

著录项

  • 作者

    Almejalli Khaled A.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号