首页> 外文OA文献 >Statewide land cover derived from multi-seasonal Landsat TM data
【2h】

Statewide land cover derived from multi-seasonal Landsat TM data

机译:来自多个季节Landsat TM数据的全州范围土地覆盖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Landsat Thematic Mapper data were the basis in production of a statewide land cover dataset for Wisconsin, undertaken in partnership with USGS’s Gap Analysis Program. The dataset contained seven classes comparable to Anderson Level I and 24 classes comparable to Anderson Levels II/III. Twelve scenes of dual-date TM data were processed with methods that included principal components analysis; stratification into spectrally consistent units; separate classification of upland, wetland, and urban areas; and a hybrid supervised/unsupervised classification called ”guided clustering”. The final data had overall accuracies of 94% for Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for deciduous and coniferous forest were 95% and 93%, respectively, and forest species’ overall accuracies ranged from 70 to 84%. Limited availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground truth, and some analyst intervention.
机译:与USGS的差距分析计划合作,Landsat Thematic Mapper数据是威斯康星州全州土地覆盖数据集生产的基础。数据集包含与安德森I级相当的七个类别和与安德森II / III级相当的24个类别。用包括主成分分析在内的方法处理了十二个双日期TM数据场景。分层为光谱一致的单位;高地,湿地和城市地区的单独分类;以及有监督/无监督的混合分类,称为“引导聚类”。最终数据的总体准确度为:安德森(Anderson)一级旱地课程为94%,二/三级旱地课程为77%,二/三级湿地课程为84%。落叶和针叶林的分类准确度分别为95%和93%,森林物种的总体准确度为70%至84%。由于可接受图像的可用性有限,因此必须在大多数场景对中使用5月初的日期,这可能会导致旱地落叶林物种的准确性降低。混合的落叶/针叶林类别的准确性最低,这很可能是由于对纯混合类别进行了明显分类。含有橡木的混合森林签名经常与纯橡木混淆。引导聚类被认为是一种有效的分类方法,特别是在树种级别,尽管其成功部分取决于图像日期,准确的地面实况和一些分析人员的干预。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号