首页> 外文OA文献 >Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes
【2h】

Nonparametric relevance-shifted multiple testing procedures for the analysis of high-dimensional multivariate data with small sample sizes

机译:非参数相关移位的多重测试程序,用于分析小样本量的高维多元数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: In many research areas it is necessary to find differences between treatment groups with several variables. For example, studies of microarray data seek to find a significant difference in location parameters from zero or one for ratios thereof for each variable. However, in some studies a significant deviation of the difference in locations from zero (or 1 in terms of the ratio) is biologically meaningless. A relevant difference or ratio is sought in such cases. Results: This article addresses the use of relevance-shifted tests on ratios for a multivariate parallel two-sample group design. Two empirical procedures are proposed which embed the relevance-shifted test on ratios. As both procedures test a hypothesis for each variable, the resulting multiple testing problem has to be considered. Hence, the procedures include a multiplicity correction. Both procedures are extensions of available procedures for point null hypotheses achieving exact control of the familywise error rate. Whereas the shift of the null hypothesis alone would give straight-forward solutions, the problems that are the reason for the empirical considerations discussed here arise by the fact that the shift is considered in both directions and the whole parameter space in between these two limits has to be accepted as null hypothesis. Conclusion: The first algorithm to be discussed uses a permutation algorithm, and is appropriate for designs with a moderately large number of observations. However, many experiments have limited sample sizes. Then the second procedure might be more appropriate, where multiplicity is corrected according to a concept of data-driven order of hypotheses.
机译:背景:在许多研究领域中,有必要找出具有多个变量的治疗组之间的差异。例如,对微阵列数据的研究试图找到位置参数的显着差异,其对于每个变量的比率从零或一。但是,在某些研究中,位置差异与零(或比率为1)的显着偏差在生物学上是没有意义的。在这种情况下,寻求相关的差异或比率。结果:本文介绍了针对多变量并行两样本组设计对比率进行相关性移位检验。提出了两种经验方法,将相关性移位检验嵌入比率。由于两个过程都针对每个变量测试了一个假设,因此必须考虑由此产生的多重测试问题。因此,该过程包括多重校正。这两个过程都是点零假设可用过程的扩展,实现了对族错误率的精确控制。尽管仅凭零假设的偏移即可给出直接的解决方案,但由于在两个方向都考虑了偏移并且在这两个极限之间存在整个参数空间,因此存在以下问题,这是此处讨论的经验考虑的原因被接受为原假设。结论:将要讨论的第一个算法使用置换算法,适用于观测值中等的设计。但是,许多实验的样本量有限。然后,第二个过程可能更合适,其中根据数据驱动的假设顺序的概念纠正多重性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号