首页> 外文OA文献 >Analysis and clustering of residential customers energy behavioral demand using smart meter data
【2h】

Analysis and clustering of residential customers energy behavioral demand using smart meter data

机译:使用智能电表数据分析和聚类居民客户的能源行为需求

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster.udIn this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability.udFinally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
机译:群集方法越来越多地应用于住宅智能电表数据,为配电网络运营商(DNO)提供了许多重要的机会来管理和规划低压网络。集群化对于DNO具有许多潜在的优势,包括确定需求响应的合适候选者并改善能源分布模型。但是,由于家庭水平需求的高度随机性和不规则性,需要详细的分析来定义适当的属性以进行聚类。 ud本文中,我们对客户的智能电表数据进行了深入分析,以更好地了解峰值需求和可变性的主要来源在他们的行为上。我们找到了四个关键时间段,应在其中分析数据,并以此为我们的聚类形成相关属性。我们提出了一个基于有限混合模型的聚类,在其中我们发现了10个不同的行为组,这些行为组根据客户的需求及其可变性来描述客户。 ud最后,使用现有的引导技术,我们证明了聚类是可靠的。据作者所知,这是电力系统文献中首次测试了聚类的样本鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号