首页> 外文期刊>Smart Grid, IEEE Transactions on >Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data
【24h】

Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data

机译:智能电表数据对居民用户能源行为需求的分析与聚类

获取原文
获取原文并翻译 | 示例

摘要

Clustering methods are increasingly being applied to residential smart meter data, which provides a number of important opportunities for distribution network operators (DNOs) to manage and plan low-voltage networks. Clustering has a number of potential advantages for DNOs, including the identification of suitable candidates for demand response and the improvement of energy profile modeling. However, due to the high stochasticity and irregularity of household-level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper, we present in-depth analysis of customer smart meter data to better understand the peak demand and major sources of variability in their behavior. We find four key time periods, in which the data should be analyzed, and use this to form relevant attributes for our clustering. We present a finite mixture model-based clustering, where we discover ten distinct behavior groups describing customers based on their demand and their variability. Finally, using an existing bootstrap technique, we show that the clustering is reliable. To the authors’ knowledge, this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
机译:群集方法越来越多地应用于住宅智能电表数据,这为配电网络运营商(DNO)提供了许多重要的机会来管理和规划低压网络。集群化对于DNO具有许多潜在的优势,包括确定需求响应的合适候选者和改善能源分布模型。但是,由于家庭需求的高度随机性和不规则性,需要详细的分析来定义适当的属性以进行聚类。在本文中,我们将对客户的智能电表数据进行深入分析,以更好地了解峰值需求以及其行为变化的主要来源。我们找到四个关键时间段,应在其中分析数据,并以此为我们的聚类形成相关属性。我们提出了一个基于有限混合模型的聚类,在其中我们发现了十个不同的行为组,这些行为组根据客户的需求及其可变性来描述客户。最后,使用现有的引导程序技术,我们证明聚类是可靠的。据作者所知,这是电力系统文献中首次对聚类的样本鲁棒性进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号