首页> 外文OA文献 >Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing nonlinearity
【2h】

Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing nonlinearity

机译:非线性增加的Lorenz 1963模型的混合数据同化方法比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVAR with respect to two traditional methods (4DVAR and ETKF) and an ensemble transform Kalmanud smoother (ETKS) on the Lorenz 1963 model. We specifically investigated this performance with increasing nonlinearity and using a quasi-static variational assimilation algorithm as a comparison. Using the analysis root mean square error (RMSE) as a metric, these methods have been compared considering (1) assimilation window length and observation interval size and (2) ensemble size to investigate the influence of hybrid background error covariance matrices and nonlinearity on the performance of the methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods show an improvement in RMSE compared to the traditional methods. For long assimilation window lengths in which nonlinear dynamics are substantial, the variational framework can have diffculties fnding the global minimum of the cost function, so we explore a quasi-static variational assimilation (QSVA) framework. Of the hybrid methods, it is seen that under certain parameters, hybrid methods which do not use a climatological background error covariance do not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a climatological background error covariance matrix with QSVA outperform all other methods due to the full flow dependency of the background error covariance matrix which also allows for the most nonlinearity.
机译:我们针对Lorenz 1963模型上的两种传统方法(4DVAR和ETKF)和整体变换卡尔曼平滑平滑器(ETKS),系统地比较了ETKF-4DVAR,4DVAR-BEN和4DENVAR的性能。我们专门研究了这种性能,其中非线性不断增加,并且使用了准静态变分同化算法作为比较。使用分析均方根误差(RMSE)作为度量标准,对这些方法进行了比较,考虑了(1)同化窗口长度和观测间隔大小以及(2)集合大小,以研究混合背景误差协方差矩阵和非线性因素对混合背景误差协方差矩阵的影响方法的性能。对于具有接近线性动力学的短同化窗口,已证明与传统方法相比,所有混合方法均显示出RMSE的改进。对于较长的同化窗口长度(其中非线性动力学非常重要),变分框架可能难以找到成本函数的全局最小值,因此我们研究了准静态变分同化(QSVA)框架。在混合方法中,可以看出,在某些参数下,不使用气候背景误差协方差的混合方法不需要QSVA即可准确执行。通常,结果表明,由于背景误差协方差矩阵具有完全的流量依赖性,因此不使用带有QSVA的气候背景误差协方差矩阵的ETKS和混合方法要优于所有其他方法,这也使非线性度最高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号