首页> 外文OA文献 >Parsimony analysis of unaligned sequence data: maximization of homology and minimization of homoplasy, not minimization of operationally defined total cost or minimization of equally weighted transformations
【2h】

Parsimony analysis of unaligned sequence data: maximization of homology and minimization of homoplasy, not minimization of operationally defined total cost or minimization of equally weighted transformations

机译:简化序列数据的简约分析:最大化同源性和最小化同源性,而不是最小化可操作定义的总成本或最小化相等加权的转化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wheeler (2012) stated that minimization of ad hoc hypotheses as emphasized by Farris (1983) always leads to a preference for trivial optimizations when analysing unaligned sequence data, leaving no basis for tree choice. That is not correct. Farris's framework can be expressed as maximization of homology, a formulation that has been used to overcome the problems with inapplicables (it leads to the notion of subcharacters as a quantity to be co-minimized in parsimony analysis) and that is known not to lead to a preference for trivial optimizations when analysing unaligned sequence data. Maximization of homology, in turn, can be formulated as a minimization of ad hoc hypotheses of homoplasy in the sense of Farris, as shown here. These issues are not just theoretical but have empirical relevance. It is therefore also discussed how maximization of homology can be approximated under various weighting schemes in heuristic tree alignment programs, such as POY, that do not take into account subcharacters. Empirical analyses that use the so-called 3221 cost set (gap opening cost three, transversion and transition costs two, and gap extension cost one), the cost set that is known to be an optimal approximation under equally weighted homology in POY, are briefly reviewed. From a theoretical point of view, maximization of homology provides the general framework to understand such cost sets in terms that are biologically relevant and meaningful. Whether or not embedded in a sensitivity analysis, this is not the case for minimization of a cost that is defined in operational terms only. Neither is it the case for minimization of equally weighted transformations, a known problem that is not addressed by Kluge and Grant's (2006) proposal to invoke the anti-superfluity principle as a rationale for this minimization.
机译:Wheeler(2012)指出,Farris(1983)强调的即席假设的最小化总是导致在分析未比对序列数据时偏向于琐碎的优化,而没有选择树的依据。那是不对的。 Farris的框架可以表示为同源性的最大化,这种形式已被用来克服不适用项的问题(它导致子字符的概念是在简约分析中要共同最小化的量),并且已知不会导致分析未比对的序列数据时,优先选择最简单的优化方法。反过来,同源性的最大化可以表示为法里斯意义上的对同质性的特殊假设的最小化,如此处所示。这些问题不仅是理论上的,而且还具有经验上的意义。因此,还讨论了如何在不考虑子字符的启发式树对齐程序(例如POY)的各种加权方案下近似同源性的最大值。简要地讲,使用了所谓的3221成本集(缺口开放成本为3,转换和过渡成本为2,以及缺口延伸成本为1)进行的经验分析,该成本集是在POY中相等加权同质下的最优近似值。已审查。从理论上讲,同源性的最大化提供了从生物学上相关且有意义的角度理解此类成本集的一般框架。无论是否嵌入敏感性分析中,都不能将仅在运营方面定义的成本降至最低。最小化相等加权的变换也不是这种情况,Kluge和Grant(2006)的建议中没有提及将反超额度原理作为这种最小化的理由,但该问题并未解决。

著录项

  • 作者

    De Laet Jan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号