首页> 外文OA文献 >Model Based Nonlinear Iterative Learning Control: A Constrained Gauss-Newton Approach
【2h】

Model Based Nonlinear Iterative Learning Control: A Constrained Gauss-Newton Approach

机译:基于模型的非线性迭代学习控制:约束高斯-牛顿法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new method is proposed to solve the model inversion problem that is part of model based iterative learning control (ILC) for nonlinear systems. The model inversion problem consists of finding the input signal corresponding to a given output signal. This problem is formulated as a nonlinear dynamic optimization problem in time domain and solved efficiently using a constrained Gauss-Newton algorithm. A nonlinear ILC algorithm based on this model inversion approach is validated numerically and experimentally. The considered application is an electric circuit described by a polynomial nonlinear state-space model. The nonlinear ILC algorithm shows fast convergence and accurate tracking control.
机译:提出了一种解决模型反演问题的新方法,该方法是非线性系统基于模型的迭代学习控制(ILC)的一部分。模型反演问题包括找到与给定输出信号相对应的输入信号。该问题被公式化为时域的非线性动态优化问题,并使用约束高斯-牛顿算法有效地解决了。数值和实验验证了基于这种模型反演方法的非线性ILC算法。所考虑的应用是一种由多项式非线性状态空间模型描述的电路。非线性ILC算法显示出快速收敛和精确的跟踪控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号