A new method is proposed to solve the model inversion problem that is part of model based iterative learning control (ILC) for nonlinear systems. The model inversion problem consists of finding the input signal corresponding to a given output signal. This problem is formulated as a nonlinear dynamic optimization problem in time domain and solved efficiently using a constrained Gauss-Newton algorithm. A nonlinear ILC algorithm based on this model inversion approach is validated numerically and experimentally. The considered application is an electric circuit described by a polynomial nonlinear state-space model. The nonlinear ILC algorithm shows fast convergence and accurate tracking control.
展开▼