首页> 外文OA文献 >A mental model theoretical explanation of facilitation in probabilistic reasoning
【2h】

A mental model theoretical explanation of facilitation in probabilistic reasoning

机译:概率推理中便利化的心理模型理论解释

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present an experiment in probabilistic reasoning conducted with 200 participants, whose task was to forecast the outcome of two independent events in a probability problem. We evaluated predictions of the Mental Model Theory of Extensional Reasoning based on Johnson-Laird, Legrenzi, Girotto, Legrenzi and Caverni (1999), 'Naive Probability', according to which people construct the probability of an event from the different possible ways in which the event could occur, and use the proportion amongst mental models to determine the probability of the event. We observed that the formulation of questions with a single change in content has a direct impact on performance. Formulating the premise of a coin tossing problem with a distinguishing attribute such as gold versus silver coin, improves the performance significantly from 64% to 79% correct. To explain the resulting facilitation effect, we apply the Mental Model Theory of Extensional Reasoning and the 'tagging' of mental representations. Based on our observation, we adapted the theory to incorporate the 'tagging' of mental models with attributes. Our explanation is that the mental models are tagged with the additional attribute, which in turn facilitates the distinction between otherwise confounded mental models and thus improves combinatorial reasoning performance. This facilitation with distinguishing attributes also significantly reduces the equiprobability bias noted in the control condition. The Mental Model Theory of Extensional Reasoning is a more precise and algorithmic description of the process to elaborate mental representations which define the sample space in probabilistic tasks.
机译:我们提出了一个由200名参与者进行的概率推理实验,其任务是预测概率问题中两个独立事件的结果。我们根据Johnson-Laird,Legrenzi,Girotto,Legrenzi和Caverni(1999)的“天真概率”评估了扩展推理心智模型理论的预测,根据这种预测,人们可以通过不同的可能方式来构造事件的概率事件可能发生,并使用心理模型之间的比例来确定事件的可能性。我们观察到,仅更改内容即可提出问题,对绩效有直接影响。通过使用诸如金币和银币之类的区别属性来制定抛硬币问题的前提,可以将性能从正确的64%显着提高到79%。为了解释由此产生的促进作用,我们应用了扩展推理的心理模型理论和心理表征的“标记”。根据我们的观察,我们对理论进行了调整,以将带有属性的心理模型“标记”入其中。我们的解释是,心理模型带有附加属性,这反过来促进了其他混淆的心理模型之间的区别,从而提高了组合推理性能。具有明显属性的这种简化也显着降低了控制条件中指出的等概率偏差。扩展推理的心理模型理论是对过程的更精确的算法描述,它详细阐述了定义概率任务中样本空间的心理表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号