首页> 外文OA文献 >Multivariate Clenshaw-Curtis integration using Chebyshev lattices
【2h】

Multivariate Clenshaw-Curtis integration using Chebyshev lattices

机译:使用切比雪夫格的多元Clenshaw-Curtis积分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a multivariate extension to Clenshaw-Curtis quadrature based on the hyperinterpolation theory. At the heart of it, a cubature rule for an integral with Chebyshev weight function is needed. Several point sets have been discussed in this context but we introduce Chebyshev lattices as generalizing framework. This has several advantages: (1) it has a very natural extension to higher dimensions, (2) allows for a systematic search for good point sets and (3) because of the construction, there is a direct link with the Fourier transform that can be used to reduce the computational cost. It will be shown that almost all known two- and three-dimensional point sets for this Chebyshev weighted setting fit into the framework. We give them a uniform description using the Chebyshev lattices and reveal some previously unobserved similarities. Blending, the not so commonly known extension to higher dimensions, also fits into this framework.
机译:基于超插值理论,我们提出了对Clenshaw-Curtis正交的多元扩展。从本质上讲,需要一个与切比雪夫权重函数积分的定律规则。在这种情况下已经讨论了几个点集,但是我们介绍了切比雪夫格作为概括框架。这具有几个优点:(1)对更高维度具有非常自然的扩展;(2)允许系统地搜索良好的点集;(3)由于构造,与傅立叶变换有直接的联系,可以用于减少计算成本。将显示该Chebyshev加权设置的几乎所有已知的二维和三维点集都适合该框架。我们使用切比雪夫格对它们进行统一描述,并揭示一些以前未曾观察到的相似之处。混合(对广度尺寸的扩展不是很常见)也适用于此框架。

著录项

  • 作者

    Poppe Koen; Cools Ronald;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号