首页> 外文期刊>BIT numerical mathematics >Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function
【24h】

Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function

机译:Chebyshev点阵,具有Chebyshev权重函数的统一培养框架

获取原文
获取原文并翻译 | 示例

摘要

We present a multivariate extension to Clenshaw-Curtis quadrature based on Sloan's hyperinterpolation theory. At the centre of it, a cubature rule for integrals with Chebyshev weight function is needed. We introduce so called Chebyshev lattices as a generalising framework for the multitude of point sets that have been discussed in this context. This framework provides a uniform notation that extends easily to higher dimensions. In this paper we describe many known point sets as Chebyshev lattices. In the introduction we briefly explain how convergence results from hyperinterpolation can be used in this context. After introducing Chebyshev lattices and the associated cubature rules, we show how most of the two- and three-dimensional point sets in this context can be described with this notation. The not so commonly known blending formulae from Godzina, which explicitly describe point sets in any number of dimensions, also fit in perfectly.
机译:我们提出基于斯隆超插值理论的Clenshaw-Curtis求积的多元扩展。在它的中心,需要具有切比雪夫权重函数的积分的孵化规则。我们引入所谓的Chebyshev格点作为在此背景下已讨论的多个点集的概括框架。该框架提供了统一的符号,可以轻松扩展到更高的维度。在本文中,我们将许多已知的点集描述为Chebyshev格。在引言中,我们简要解释了如何在这种情况下使用超插值产生的收敛。在介绍了切比雪夫点阵和相关的容积规则之后,我们展示了如何用这种符号来描述上下文中的大多数二维和三维点集。 Godzina不太广为人知的混合公式,可以明确描述任意尺寸的点集,也非常适合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号