首页> 外文OA文献 >Parametric model-order reduction for viscoelastic finite element models: an application to material parameter identification
【2h】

Parametric model-order reduction for viscoelastic finite element models: an application to material parameter identification

机译:粘弹性有限元模型的参数模型降阶:在材料参数识别中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many engineering applications, viscoelastic treatments are used to suppress vibrations of lightly damped structures. Computational methods provide powerful tools for the design and analysis of these structures. The most commonly used method to model the dynamics of complex structures is the finite element method. Its use, however, often results in very large and computationally demanding models, especially when viscoelastic material behaviour has to be taken into account. To alleviate this problem, model-order reduction (MOR) techniques have been developed to reduce the size of the finite element model while still maintaining an accurate description of the most important system dynamics. In order to apply these MOR schemes, the parameter values of the full-order model have to be fixed. As a consequence, the resulting reduced-order model is only valid for one specific set of viscoelastic material properties. Recently though, parametric model-order reduction (pMOR) techniques have been introduced. These methods allow the parameter dependency to be retained in the reduced-order models. This makes them a valuable tool for use in optimization procedures, where the system model has to be evaluated time and again for varying parameter values. This paper presents a Krylov subspace technique for reduced-order modelling, embedded in a recent pMOR framework, to create reduced-order models of viscoelastic finite element models in which the dependency on the viscoelastic material parameters is retained. The viscoelastic material properties are modelled using the Golla-Hughes-McTavish formulation. This procedure is then applied to a finite element model of a cantilever beam with viscoelastic treatment. The resulting reduced-order model is used to identify viscoelastic material properties from experiments through an inverse optimization procedure, demonstrating both the efficiency and accuracy of the obtained reduced-order model.
机译:在许多工程应用中,粘弹性处理用于抑制轻阻尼结构的振动。计算方法为这些结构的设计和分析提供了强大的工具。建模复杂结构动力学的最常用方法是有限元法。但是,它的使用通常会导致非常庞大且计算量大的模型,尤其是在必须考虑粘弹性材料行为的情况下。为了减轻这个问题,已经开发了模型阶数减少(MOR)技术来减小有限元模型的大小,同时仍保持对最重要的系统动力学的准确描述。为了应用这些MOR方案,必须固定全阶模型的参数值。结果,所得的降阶模型仅对一组特定的粘弹性材料属性有效。但是,最近,引入了参数模型降阶(pMOR)技术。这些方法允许将参数依赖性保留在降阶模型中。这使它们成为用于优化过程的宝贵工具,在优化过程中,必须针对不同的参数值一次又一次地评估系统模型。本文提出了一种嵌入到最新pMOR框架中的降阶建模Krylov子空间技术,以创建粘弹性有限元模型的降阶模型,其中保留了对粘弹性材料参数的依赖性。使用Golla-Hughes-McTavish公式对粘弹性材料的性能进行建模。然后将该程序应用于经过粘弹性处理的悬臂梁的有限元模型。所得的降阶模型用于通过逆优化程序从实验中识别粘弹性材料的性能,从而证明了所获得的降阶模型的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号