首页> 外文OA文献 >Development of a Tactile Feedback System for Robot Assisted Minimally Invasive Surgery
【2h】

Development of a Tactile Feedback System for Robot Assisted Minimally Invasive Surgery

机译:机器人辅助微创手术的触觉反馈系统的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Minimally Invasive Surgery (MIS) continues to grow in importance and to gradually change and improve the medical practice. This technique comes with great advantages, such as lower risk, fast patient recovery and a reduced hospital stay, but requires an increased dexterity and concentration on the part of the surgeon. To solve those problems, robots were introduced that mimic the movements of the surgeons, allowing them to focus solely on the medical procedure. Currently, there is only visual feedback from the patient to the surgeon. The lack of haptic feedback is one of the most important drawbacks of minimally invasive surgery.To restore the tactile information channel, a tactile feedback systems has to be developed. Such a feedback system consists of two main parts. A tactile sensor to register the tactile information inside the patient, and a tactile display to reflect the tactile information to the skin of the surgeon. The requirements for such a tactile feedback system are derived from the properties of the human sense of touch in the application of soft tissue palpation.The first part of a tactile feedback system is the tactile sensor. After studying different sensor principles, elastoresistance is chosen for its simplicity and robustness, and examined more closely. Elastoresistance is found to be often poorly understood and its physical principle misconceived. Simple experiments show that only the contact resistance plays a role in an elastoresistive tactile sensor. The design of a new tactile sensor is discussed, together with improved readout electronics. These electronics are optimised for high speed and low interference with the sensor signal. They can easily be adapted for different sensitivity and resistance ranges, and only use very low voltages, which is relevant in the context of MIS. The prototype tactile sensor is simple, flexible, cheap, thin and adjusted for the desired pressure range, but still suffers from large hysteresis and drift.The second part of a tactile feedback system is the tactile display. After going through some general design guidelines, an overview is given on existing tactile displays with a slight focus on small scale shape displays. Several prototypes are built in an attempt to meet the challenging requirements. These include the first appearances of hydraulics applied in tactile displays. The first is a closed hydraulic system, profiting from the incompressibility of water to transfer the actuation over a distance. The second uses an open hydraulic system with a piezoelectric proportional valve to actuate the individual pins of the tactile display. A final prototype uses pneumatics and needs a pneumatic proportional valve to control the force of the pins. Existing commercial valves are too large to fit into an already crowded operating room, and make too much noise. Therefore a small and noiseless proportional valve is designed and built, which allows for easy integration into a compact array to operate the necessary large amount of pins. The pressure range which this valve can produce,however, is too small for a tactile display, and the design needs considerably more research before it can be employed.To realise an integrated, functional tactile feedback system a tactile display `lite' is built with commercial pneumatic valves. The aim of the system is to serve as a proof of concept rather than to fulfil all the requirements. It does stand out among other tactile displays found in literature. While there are displays with a larger bandwidth, a higher resolution or a higher force, none of them combines those in a single display. On top of that, the display is very compact and has an almost negligible weight. An experiment to evaluate the combined system shows that it allows to perform a relatively complex discrimination task, even though it is too difficult to distinguish a hard ball in soft tissue.
机译:微创手术(MIS)的重要性不断提高,并逐渐改变和改善医疗实践。该技术具有很大的优势,例如较低的风险,快速的患者康复和减少的住院时间,但需要外科医生提高灵活性和专注力。为了解决这些问题,引入了模仿外科医生运动的机器人,使他们仅专注于医疗程序。当前,仅从患者到外科医生的视觉反馈。缺乏触觉反馈是微创手术最重要的缺点之一。为了恢复触觉信息通道,必须开发触觉反馈系统。这样的反馈系统包括两个主要部分。触觉传感器将触觉​​信息记录在患者体内,而触觉显示器将触觉信息反映到外科医生的皮肤上。这种触觉反馈系统的要求源自在软组织触诊应用中人的触觉特性。触觉反馈系统的第一部分是触觉传感器。在研究了不同的传感器原理之后,选择了弹性电阻,因为它具有简单性和鲁棒性,并且进行了更仔细的研究。人们发现经常难以理解抗弹性,并且其物理原理被误解了。简单的实验表明,仅接触电阻在弹性触觉传感器中起作用。讨论了新型触觉传感器的设计以及改进的读出电子设备。这些电子设备经过优化,可实现高速且对传感器信号的干扰小。它们可以轻松地适应不同的灵敏度和电阻范围,并且仅使用非常低的电压,这在MIS的情况下很重要。原型触觉传感器简单,灵活,便宜,纤薄并已针对所需压力范围进行了调整,但仍然存在较大的滞后和漂移。触觉反馈系统的第二部分是触觉显示器。通过一些通用的设计指南后,将对现有的触觉显示器进行概述,而将重点放在小尺寸的形状显示器上。为了满足挑战性的要求,制造了一些原型。这些包括在触觉显示器中应用的液压技术的首次出现。第一个是封闭的液压系统,它得益于水的不可压缩性,可以在一段距离内传递驱动力。第二种使用带有压电比例阀的开放式液压系统来驱动触觉显示器的各个销。最终的原型使用气动元件,并且需要一个气动比例阀来控制销的力。现有的商用阀太大,无法放入已经拥挤的手术室中,并且发出太多的噪音。因此,设计并制造了一种小型且无噪音的比例阀,可轻松集成到紧凑的阵列中以操作必要的大量销。但是,该阀可产生的压力范围对于触觉显示器来说太小,在使用之前,该设计还需要进行更多的研究。要实现集成的功能触觉反馈系统,需要构建带有“触觉显示器”的“ lite”商用气动阀。该系统的目的是作为概念证明而不是满足所有要求。它确实在文献中的其他触觉显示中脱颖而出。尽管存在带宽更大,分辨率更高或作用力更大的显示器,但它们都没有将它们组合在一个显示器中。最重要的是,显示器非常紧凑,重量几乎可以忽略不计。评估组合系统的实验表明,即使很难区分软组织中的硬球,它也可以执行相对复杂的识别任务。

著录项

  • 作者

    Goethals Pauwel;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号