首页> 外文OA文献 >Simulation of SLA-based VM-scaling algorithms for cloud-distributed applications
【2h】

Simulation of SLA-based VM-scaling algorithms for cloud-distributed applications

机译:针对云分布式应用的基于SLA的VM扩展算法的仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.
机译:云计算已发展成为一种实现工具,可提供对在托管网络连接的计算系统上运行的大规模分布式应用程序的访问。这使得可以在云环境中托管分布式企业信息系统(dEIS),同时执行使用服务级别协议(SLA)定义的严格性能和服务质量要求。 {SLA}定义了分布式应用程序的性能边界,并由云管理系统(CMS)强制实施,该管理系统将可用的计算资源动态分配给云服务。我们介绍了两种针对dEIS系统的新颖VM扩展算法,它们使用从恒定工作负载基准派生的分布式应用程序的性能模型以及SLA指定的性能约束来最佳地检测最合适的扩展条件。我们在云模拟器中模拟VM扩展算法,并与基于跟踪的dEIS性能模型进行比较。我们基于涉及大量可变用户的真实应用场景,总共比较了三种基于SLA的VM扩展算法(一种使用预测机制)。我们的结果表明,与仅使用基于反应式SLA的VM扩展算法相比,在云管理系统中使用自回归预测SLA驱动的扩展算法来保证分布式云应用程序的性能不变是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号