首页> 外文OA文献 >Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data
【2h】

Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data

机译:基于分位数范围的波动率度量,用于使用高频数据建模和预测波动率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Volatility of asset prices in financial market is not directly observable. Return-based models have been proposed to estimate the volatility using daily close price. Recently, many new range-based volatility measures were proposed to estimate the financial volatility. A quantile Parkinson (QPK) measure is proposed to estimate daily volatility. We show how the Parkinson (PK) measure can robustify in the presence of intraday extreme returns. Results from extensive simulation studies show that the QPK measure is more efficient than intraday (open-to-close) squared returns and PK measures in the presence of intraday extreme returns. To demonstrate the applicability of QPK measure, we analyse the daily Standard and Poor 500 indices by fitting the QPK measure to the conditional autoregressive range (CARR) models. Results shows that choosing a suitable quantile level for the QPK measure will reduce its variance and hence improve its efficiency. In addition, the QPK measure using asymmetric CARR model gives the best in-sample model fit based on Akaike information criterion and provides the best out-of-sample forecast based on root mean squared forecast error and other measures. Mincer Zarnowitz test is carried out to confirm the unbiasedness of the forecasted volatility. Different levels of value-at-risk and conditional value-at-risk forecasts are also provided.
机译:不能直接观察到金融市场资产价格的波动。已经提出了基于收益的模型来使用每日收盘价来估计波动率。最近,提出了许多新的基于范围的波动率度量来估计金融波动率。建议使用分位数帕金森(QPK)度量来估计每日波动性。我们展示了帕金森(PK)度量如何在存在日内极高回报的情况下变得稳健。大量模拟研究的结果表明,在存在日内极端收益的情况下,QPK量度比日内(开盘价)平方收益和PK量度更为有效。为了证明QPK量度的适用性,我们通过将QPK量度拟合到条件自回归范围(CARR)模型来分析每日标准和差500。结果表明,为QPK量度选择合适的分位数水平将减少其方差,从而提高其效率。此外,使用非对称CARR模型的QPK度量基于Akaike信息准则提供了最佳的样本内模型拟合,并且基于均方根的预测误差和其他度量提供了最佳的样本外预测。进行Mincer Zarnowitz测试以确认预测波动率的无偏性。还提供了不同级别的风险价值预测和有条件的风险价值预测。

著录项

  • 作者

    Ng K.H.; Chan J.; Tan S.K.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号