首页> 外文OA文献 >Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero Dynamics
【2h】

Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero Dynamics

机译:在人为启发的混合零动力学技术的平地,上坡和崎Terra地形上行走的双足机器人

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis shows how to achieve bipedal robotic walking on flat-ground, up-slope and rough terrain by using Human-Inspired control. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described by simple functions of time (termed canonical walking functions). Formally, we construct a torque controller, through model inversion, that drives the outputs of the robot to the outputs of the human as represented by the canonical walking function; while these functions fit the human data well, they do not apriori guarantee robotic walking (due to do the physical differences between humans and robots). An optimization problem is presented that determines the best fit of the canonical walking function to the human data, while guaranteeing walking for a specific bipedal robot; in addition, constraints can be added that guarantee physically realizable walking. We consider a physical bipedal robot, AMBER, and considering the special property of the motors used in the robot, i.e., low leakage inductance, we approximate the motor model and use the formal controllers that satisfy the constraints and translate into an efficient voltage-based controller that can be directly implemented on AMBER. The end result is walking on flat-ground and up-slope which is not just human-like, but also amazingly robust. Having obtained walking on specific well defined terrains separately, rough terrain walking is achieved by dynamically changing the extended canonical walking functions (ECWF) that the robot outputs should track at every step. The state of the robot, after every non-stance foot strike, is actively sensed and the new CWF is constructed to ensure Hybrid Zero Dynamics is respected in the next step. Finally, the technique developed is tried on different terrains in simulation and in AMBER showing how the walking gait morphs depending on the terrain.
机译:本文展示了如何通过使用人为控制来实现在平坦地面,上坡和崎terrain地形上的双足机器人行走。我们首先考虑人类步行数据,然后找到从人类数据计算得出的输出(或虚拟约束),这些输出由简单的时间函数(称为规范步行函数)描述。形式上,我们通过模型求逆构造一个扭矩控制器,该扭矩控制器将机器人的输出驱动为人的输出,如规范的行走功能所代表。尽管这些功能非常适合人类数据,但它们并不能保证机器人行走(由于人类和机器人之间的物理差异)。提出了一个优化问题,该问题确定了规范行走功能与人类数据的最佳匹配,同时保证了特定双足机器人的行走。此外,可以添加一些限制条件,以确保在物理上可以实现步行。我们考虑一个物理双足机器人AMBER,并考虑机器人中使用的电动机的特殊特性,即低漏感,我们对电动机模型进行近似,并使用满足约束条件的形式控制器,并转化为基于电压的有效模型。可以直接在AMBER上实现的控制器。最终结果是在平坦的地面和高坡上行走,这不仅像人一样,而且坚固耐用。分别获得在明确定义的特定地形上的行走之后,可通过动态更改机器人输出在每个步骤中应跟踪的扩展规范行走功能(ECWF)来实现崎terrain的地形行走。每次非站姿踩脚后,都会自动感应到机器人的状态,并构造新的CWF以确保在下一步中遵守“混合零动态”。最后,在模拟中和在AMBER中尝试了在不同地形上开发的技术,以显示步行步态如何随地形而变化。

著录项

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号