首页> 外文OA文献 >Timing Synchronization and Node Localization in Wireless Sensor Networks: Efficient Estimation Approaches and Performance Bounds
【2h】

Timing Synchronization and Node Localization in Wireless Sensor Networks: Efficient Estimation Approaches and Performance Bounds

机译:无线传感器网络中的定时同步和节点本地化:有效的估计方法和性能界限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless sensor networks (WSNs) consist of a large number of sensor nodes, capable of on-board sensing and data processing, that are employed to observe some phenomenon of interest. With their desirable properties of flexible deployment, resistance to harsh environment and lower implementation cost, WSNs envisage a plethora of applications in diverse areas such as industrial process control, battle- field surveillance, health monitoring, and target localization and tracking. Much of the sensing and communication paradigm in WSNs involves ensuring power efficient transmission and finding scalable algorithms that can deliver the desired performance objectives while minimizing overall energy utilization. Since power is primarily consumed in radio transmissions delivering timing information, clock synchronization represents an indispensable requirement to boost network lifetime. This dissertation focuses on deriving efficient estimators and performance bounds for the clock parameters in a classical frequentist inference approach as well as in a Bayesian estimation framework.A unified approach to the maximum likelihood (ML) estimation of clock offset is presented for different network delay distributions. This constitutes an analytical alternative to prior works which rely on a graphical maximization of the likelihood function. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using factor graphs. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. This extends the current literature to cases where the clock offset is not deterministic, but is in fact a random process.A natural extension of pairwise synchronization is to develop algorithms for the more challenging case of network-wide synchronization. Assuming exponentially distributed random delays, a network-wide clock synchronization algorithm is proposed using a factor graph representation of the network. Message passing using the max- product algorithm is adopted to derive the update rules for the proposed iterative procedure. A closed form solution is obtained for each node's belief about its clock offset at each iteration.Identifying the close connections between the problems of node localization and clock synchronization, we also address in this dissertation the problem of joint estimation of an unknown node's location and clock parameters by incorporating the effect of imperfections in node oscillators. In order to alleviate the computational complexity associated with the optimal maximum a-posteriori estimator, two iterative approaches are proposed as simpler alternatives. The first approach utilizes an Expectation-Maximization (EM) based algorithm which iteratively estimates the clock parameters and the location of the unknown node. The EM algorithm is further simplified by a non-linear processing of the data to obtain a closed form solution of the location estimation problem using the least squares (LS) approach. The performance of the estimation algorithms is benchmarked by deriving the Hybrid Cramer-Rao lower bound (HCRB) on the mean square error (MSE) of the estimators.We also derive theoretical lower bounds on the MSE of an estimator in a classical frequentist inference approach as well as in a Bayesian estimation framework when the likelihood function is an arbitrary member of the exponential family. The lower bounds not only serve to compare various estimators in our work, but can also be useful in their own right in parameter estimation theory.
机译:无线传感器网络(WSN)由大量的传感器节点组成,能够进行车载传感和数据处理,这些传感器节点用于观察某些令人感兴趣的现象。由于具有灵活部署,抗恶劣环境和降低实施成本的理想特性,WSN设想了在不同领域中的大量应用,例如工业过程控制,战场监视,健康监控以及目标定位和跟踪。 WSN中的许多传感和通信范例都涉及确保高效的功率传输和寻找可扩展的算法,这些算法可提供所需的性能目标,同时将总体能源利用率降至最低。由于功率主要在传递定时信息的无线电传输中消耗,因此时钟同步代表了延长网络寿命的必不可少的要求。本文以经典的常推论方法和贝叶斯估计框架为基础,针对时钟参数推导有效的估计量和性能边界。针对不同的网络时延分布,提出了一种统一的时钟偏移最大似然估计方法。 。这构成了依赖于似然函数的图形最大化的先前工作的分析替代。为了捕获节点振荡器中的不完美之处,这些不完美之处可能使时钟偏移具有时变性质,通过使用因子图提出了一种新颖的贝叶斯方法进行时钟偏移估计。使用最大乘积算法传递的消息可得出贝叶斯推理问题的精确表达式。这将当前文献扩展到时钟偏移不是确定性的而是实际上是随机过程的情况。成对同步的自然扩展是为在网络范围内更具挑战性的情况下开发算法。假设指数分布的随机延迟,提出了一种使用网络的因子图表示的全网络时钟同步算法。采用使用最大乘积算法的消息传递来导出所提出的迭代过程的更新规则。对于每个节点关于其每次迭代的时钟偏移量的信念,获得了一个封闭形式的解决方案。确定节点定位和时钟同步问题之间的紧密联系,在本文中,我们还解决了联合估计未知节点的位置和时钟的问题通过结合节点振荡器中缺陷的影响来确定参数。为了减轻与最佳最大后验估计量相关的计算复杂性,提出了两种迭代方法作为更简单的替代方法。第一种方法利用基于期望最大化(EM)的算法,该算法迭代地估计时钟参数和未知节点的位置。通过使用最小二乘(LS)方法对数据进行非线性处理以获得位置估计问题的闭式解,可以进一步简化EM算法。估算算法的性能通过在估算器的均方误差(MSE)上推导混合Cramer-Rao下界(HCRB)来进行基准测试。我们还采用经典的常推论方法得出估算器的MSE的理论下界。以及当似然函数是指数族的任意成员时的贝叶斯估计框架。下限不仅可以用来比较我们工作中的各种估计量,而且还可以在参数估计理论中本身发挥作用。

著录项

  • 作者

    Ahmad Aitzaz 1984-;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号