首页> 外文OA文献 >Optimality of the relaxed polar factors by a characterization of the set of real square roots of real symmetric matrices
【2h】

Optimality of the relaxed polar factors by a characterization of the set of real square roots of real symmetric matrices

机译:通过集合的表征来放松极性因子的最优性  实对称矩阵的实平方根

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem to determine the optimal rotations $R in {mSO}(n)$ which minimize $$W: {m SO}(n) o mathbb{R}^+_0,quad W(R,;D) := ||{m sym}(RD -1)||^2$$ for a given diagonal matrix $D := {m diag}(d_1, ..., d_n) inmathbb{R}^{n imes n}$. The function $W$ subject to minimization is thereduced form of the Cosserat shear-stretch energy, which, in its general form,is a contribution in any geometrically nonlinear, isotropic and quadraticCosserat micropolar (extended) continuum model. We characterize the criticalpoints of the energy $W(R,;D)$, determine the global minimizers and the globalminimum. This proves the correctness of previously obtained formulae for theoptimal Cosserat rotations in dimensions two and three. The key to the proof isa characterization of the entire set of (possibly non-symmetric) real matrixsquare roots of (possibly non-positive definite) real symmetric matrices whichdoes not seem to be known in the literature.
机译:我们考虑解决问题,以确定最佳旋转$ r r in { rmso}(n)$,最小化$$ w:{ rm so}(n) to mathbb {r} ^ + _ 0, quad w( r ,; d):= || { rm sym}(rd -1)|| ^ 2 $$为给定的对角线矩阵$ d:= { rm diag}(d_1,...,d_n)在 mathbb {r} ^ {n time n} $。符合最小化的函数为尺寸为孔隙剪拉伸能量的形式,其一般形式是任何几何非线性,各向同性和四元胶囊单片体(延长)连续模型的贡献。我们表征了能源的临界点W(R ,; d)$,确定全球最小化和全球性最小。这证明了先前获得的公式的优化粒子旋转尺寸两和三种的正确性。证明ISA的关键是(可能是非对称)真实矩阵的整套(可能的非正定)真实对称矩阵的键,这些矩阵在文献中没有似乎是不名的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号