首页> 外文OA文献 >Stochastic optimal control via forward and backward stochastic differential equations and importance sampling
【2h】

Stochastic optimal control via forward and backward stochastic differential equations and importance sampling

机译:通过前向和后向随机学习最优控制  微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a novel sampling-based numerical scheme designed tosolve a certain class of stochastic optimal control problems, utilizing forwardand backward stochastic differential equations (FBSDEs). By means of anonlinear version of the Feynman-Kac lemma, we obtain a probabilisticrepresentation of the solution to the nonlinear Hamilton-Jacobi-Bellmanequation, expressed in the form of a decoupled system of FBSDEs. This system ofFBSDEs can then be simulated by employing linear regression techniques. Toenhance the efficiency of the proposed scheme when treating more complexnonlinear systems, we then derive an iterative modification based on Girsanov'stheorem on the change of measure, which features importance sampling. Themodified scheme is capable of learning the optimal control without requiring aninitial guess. We present simulations that validate the algorithm anddemonstrate its efficiency in treating nonlinear dynamics.
机译:在本文中,我们提出了一种基于新的基于样本的数值方案,设计了一定类的随机最佳控制问题,利用了向后转换差动方程(FBSDES)。通过Feynman-Kac引理的Anonlinear版本,我们获得了对非线性Hamilton-jacobi-Bellmanequation的解决方案的概率表,以脱耦系统的形式表达。然后可以通过采用线性回归技术来模拟该系统的offbsdes。在处理更加复杂的线性系统时,提出了拟议方案的效率,我们基于Girsanov'Stheorem对措施变化的迭代修改,其具有重要的抽样。优化方案能够学习最佳控制而不需要aninitial猜测。我们呈现验证算法的仿真且DemonStrate验证其处理非线性动力学的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号