首页> 外文OA文献 >Likelihood Inference for Large Scale Stochastic Blockmodels With Covariates Based on a Divide-and-Conquer Parallelizable Algorithm With Communication
【2h】

Likelihood Inference for Large Scale Stochastic Blockmodels With Covariates Based on a Divide-and-Conquer Parallelizable Algorithm With Communication

机译:基于沟通的分行和征服并行征服的协调因子的大型随机块模型的似然推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a stochastic blockmodel equipped with node covariate information,that is useful in analyzing social network data. The objective is to obtainmaximum likelihood estimates of the model parameters. For this task, we devisea fast, scalable Monte Carlo EM type algorithm based on case-controlapproximation of the log-likelihood coupled with a subsampling approach. A keyfeature of the proposed algorithm is its parallelizability, by processingchunks of the data on several cores, while leveraging communication of keystatistics across the cores during every iteration. The performance of thealgorithm is evaluated on synthetic data sets and compared with competingmethods for blockmodel parameter estimation. We also illustrate the model ondata from a Facebook social network enhanced with node covariate information.
机译:我们考虑一个配备有节点协变量信息的随机块模型,可用于分析社交网络数据。目的是获得模型参数的最大似然估计。对于此任务,我们基于案例控制千克耦合的对数耦合的基于案例的蒙特蒙特卡罗EM型算法与分配方法。所提出的算法的关键成分是其并行化,通过处理多个核的数据,同时在每次迭代期间利用KeyStatics的通信。在合成数据集中评估了施入脚的性能,并与群体参数估计的竞争方法进行了比较。我们还通过节点协变量信息来说明来自Facebook社交网络的模型Ondata。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号