首页> 外文期刊>Communications in Statistics >Likelihood-Based Inference in Autoregressive Models with Scaled t-Distributed Innovations by Means of EM-Based Algorithms
【24h】

Likelihood-Based Inference in Autoregressive Models with Scaled t-Distributed Innovations by Means of EM-Based Algorithms

机译:规模化t分布创新的自回归模型中基于似然性的推理

获取原文
获取原文并翻译 | 示例

摘要

This article applies the EM-based (ECM and ECME) algorithms to find the maximum likelihood estimates of model parameters in general AR models with independent scaled t-distributed innovations whenever the degrees of freedom are unknown. The ECME, sharing advantages with both EM and Newton-Raphson algorithms, is an extension of ECM, which itself is an extension of the EM algorithm. The ECM and ECME algorithms, which are analytically quite simple to use, are then compared based on the computational running time and the accuracy of estimation via a simulation study. The results demonstrate that the ECME is efficient and usable in practice. We also show how our method can be applied to the Wolfer's sunspot data.
机译:本文应用基于EM的算法(ECM和ECME)在自由度未知的情况下,在具有独立缩放的t分布创新的一般AR模型中找到模型参数的最大似然估计。 ECME与EM和Newton-Raphson算法均具有优势,是ECM的扩展,ECM本身是EM算法的扩展。通过分析研究,基于计算运行时间和估计的准确性,比较了使用起来非常简单的ECM和ECME算法。结果表明,ECME在实践中是有效且可用的。我们还将展示如何将我们的方法应用于Wolfer的黑子数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号