首页> 外文OA文献 >Combining guaranteed and spot markets in display advertising: Selling guaranteed page views with stochastic demand
【2h】

Combining guaranteed and spot markets in display advertising: Selling guaranteed page views with stochastic demand

机译:在显示广告中结合保证和现货市场:用随机需求销售保证页面浏览量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes an optimal dynamic model for combining guaranteed andspot markets in display advertising. We assume a media seller can well estimatethe total supply and demand of page views from a specific advertisement (inshort ad) slot in a specific future period. The model helps the seller todetermine how to distribute and price those future page views betweenguaranteed contracts and advertising auctions. The former is soldalgorithmically in advance while the latter happens in a few milliseconds aftera user visits the Web page in the future. Therefore, the former is calledprogrammatic guarantee (PG) and the latter is called real-time bidding (RTB).This is one of a few studies that investigate the RTB-based posted price PG fordisplay advertising. The optimization problem is challenging because theallocation and pricing of PG affect the expected revenue from future RTBcampaigns. Several assumptions are made on media buyers' behavior, such as riskaversion, stochastic demand arrivals, and effects of time and guaranteedcontract price. We use dynamic programming to solve the optimization problemand our solution is relatively scalable and efficient. We validate the proposedmodel with an RTB dataset and find it increases the seller's expected totalrevenue by adopting different pricing and allocation strategies according tothe level of competition in future RTB campaigns.
机译:本文提出了一种最佳动态模型,用于组合展示广告中的保证和标准市场。我们假设媒体卖家可以在特定的未来期间从特定广告(INSHORT AD)插槽中的页面浏览量的总供需和需求。该模型可帮助卖方TodeterMine如何在顾问合同和广告拍卖之间分发和价格。前者是提前纠正的,而后者在几毫秒内发生后,用户将来访问了网页。因此,前者是叫做申请(PG),后者称为实时招标(RTB)。这是调查基于RTB的POS价格PG Fordisplay广告的一些研究之一。优化问题是具有挑战性的,因为PG的TheLocation和定价影响了未来RTBCAMKAigns的预期收入。几个假设是对媒体买家的行为,例如危险,随机需求抵达,以及时间的效果和保障价格。我们使用动态编程来解决优化问题和我们的解决方案是相对可扩展和高效的。我们通过RTB数据集验证了BudosModel,并通过根据未来RTB广告系列的竞争水平,通过采用不同的定价和分配策略,查找卖方的预期全线线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号